
INF333 - Operating Systems
Lecture VII

Burak Arslan
ext-inf333@burakarslan.com �

Galatasaray Üniversitesi

Lecture VII
2024-03-27

mailto:ext-inf333@burakarslan.com

Course website

burakarslan.com/inf333 �

1

https://burakarslan.com/inf333

Based On

cs111.stanford.edu �

cs212.stanford.edu �

OSC-10 Slides �

2

https://cs111.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html

Want processes to co-exist

OS
0x9000

0x7000
gcc

0x4000
bochs/pintos

0x3000
emacs

0x0000

Consider multiprogramming on physical
memory
I What happens if pintos needs to

expand?
I If emacs needs more memory than is

on the machine?
I If pintos has an error and writes to

address 0x7100?
I When does gcc have to know it will

run at 0x4000?
I What if emacs isn’t using its memory?

3

Issues in sharing physical memory
I Protection

I A bug in one process can corrupt memory in another
I Must somehow prevent process A from trashing B’s memory
I Also prevent A from even observing B’s memory (ssh-agent)

I Transparency
I A process shouldn’t require particular physical memory bits
I Yet processes often require large amounts of contiguous memory (for

stack, large data structures, etc.)
I Resource exhaustion

I Programmers typically assume machine has “enough” memory
I Sum of sizes of all processes often greater than physical memory

4

Virtual Memory

Chapter I

5

Virtual Memory Goals

...
load...

kernel

MMU memory

Is address
legal?

virtual address
0x30408

Yes: phys.
addr 0x92408

No: to fault handler

I Give each program its own virtual address space
I At runtime, Memory-Management Unit relocates each load/store
I Application doesn’t see physical memory addresses

I Also enforce protection
I Prevent one app from messing with another’s memory

I And allow programs to see more memory than exists
I Somehow relocate some memory accesses to disk

6

Virtual Memory Goals

...
load...

kernel

MMU memory

Is address
legal?

virtual address
0x30408

Yes: phys.
addr 0x92408

No: to fault handler

I Give each program its own virtual address space
I At runtime, Memory-Management Unit relocates each load/store
I Application doesn’t see physical memory addresses

I Also enforce protection
I Prevent one app from messing with another’s memory

I And allow programs to see more memory than exists
I Somehow relocate some memory accesses to disk

6

Virtual memory advantages

Can re-locate program while running
I Run partially in memory, partially on disk

7

Virtual memory advantages
Most of a process’s memory may be idle (80/20 rule).

kernel

idle

gcc

kernel

idle

emacs

physical
memory

I Write idle parts to disk until needed
I Let other processes use memory of idle part
I Like CPU virtualization: when process not using CPU, switch

(Not using a memory region? give it to another process)
8

Virtual memory advantages
Most of a process’s memory may be idle (80/20 rule).

kernel

idle

gcc

kernel

idle

emacs

physical
memory

Challenge: VM = extra layer, could be slow

8

Idea 1: no hardware, load-time linking

...
call 0x2200...

static a.out ...
call 0x5200...

kernel

0x3000

0x1000

0x6000

0x4000

Linker patches addresses of symbols like printf
I Idea: link when process executed, not at compile time

I Already have PIE (position-independent executable) for security
I Determine where process will reside in memory at launch
I Adjust all references within program (using addition)

Problems?
9

Idea 1: no hardware, load-time linking

...
call 0x2200...

static a.out ...
call 0x5200...

kernel

0x3000

0x1000

0x6000

0x4000

Problems:
I How to enforce protection?
I How to move once already in memory?

(consider data pointers)
I What if no contiguous free region fits program?

9

Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

I Two special privileged registers: base and bound
I On each load/store/jump:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound,

else trap to kernel
Problems?

10

Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: How to move process in memory?
I Change base register

10

Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: What happens on context switch?
I Kernel must re-load base and bound registers

10

Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: How to move/grow process?
I There is no easy way ¯_(ツ)_/¯

10

Virtual Memory Definitions
I Programs load/store to virtual addresses
I Actual memory uses physical addresses
I VirtMem Hardware is Memory Management Unit (MMU)

CPU MMU memory
virtual

addresses
physical

addresses

I Usually part of CPU core (one address space per hyperthread)
I Configured through privileged instructions (e.g., load bound reg)
I Translates from virtual to physical addresses
I Gives per-process view of memory called address space

11

Virtual Memory Definitions
I Programs load/store to virtual addresses
I Actual memory uses physical addresses
I VirtMem Hardware is Memory Management Unit (MMU)

CPU MMU memory
virtual

addresses
physical

addresses

I Usually part of CPU core (one address space per hyperthread)
I Configured through privileged instructions (e.g., load bound reg)
I Translates from virtual to physical addresses
I Gives per-process view of memory called address space

11

VirtMem trade-offs vs Base+bound

Advantages:
I Cheap in terms of hardware: only two registers
I Cheap in terms of cycles: do add and compare in parallel

12

VirtMem trade-offs vs Base+bound

Disadvantages:
I Growing a process is expensive or

impossible
I No way to share code or data (E.g., two

copies of bochs, both running pintos)
One solution: Multiple segments
I E.g., separate code, stack, data segments
I Possibly multiple data segments

free space

pintos2

gcc

pintos1

12

Segmentation

text r/o

gcc

data

stack

physical
memory

I Let processes have many base/bound regs
I Address space built from many segments
I Can share/protect memory at segment granularity

Must specify segment as part of virtual address
13

Segmentation mechanics

I Each process has a segment table
I Each VA indicates a segment and offset:

I Top bits of addr select segment, low bits select offset (PDP-10)
I Or segment selected by instruction or operand

(means you need wider “far” pointers to specify segment)
14

Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000

0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

I 2-bit segment number (1st digit), 12 bit offset (last 3)
I Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

15

Segmentation trade-offs

Advantages
I Multiple segments per

process
I Allows sharing! (how?)
I Don’t need entire process

in memory

16

Segmentation trade-offs
Disadvantages:
I Requires translation hardware, which could limit

performance
I Segments not completely transparent to program (e.g.,

default segment faster or uses shorter instruction)
I n byte segment needs n contiguous bytes of physical

memory
I Makes fragmentation a real problem.

17

Fragmentation
Fragmentation =⇒ Inability to use free memory. Over time:
I Variable-sized pieces = many small holes (external

fragmentation)
I Fixed-sized pieces = no external holes, but force internal waste

(internal fragmentation)

18

Alternatives to hardware MMU

Language-level protection (JavaScript)
I Single address space for different modules
I Language enforces isolation
I Singularity OS does this with C# [Hunt] �

19

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf

Alternatives to hardware MMU
Software fault isolation
I Instrument compiler output
I Checks before every store operation prevents modules

from trashing each other
I Google’s now deprecated Native Client � does this for

x86 [Yee] �

I Easier to do for virtual architecture, e.g., Wasm �

I Works really well on ARM64 [Yedidia’24] �

19

https://developer.chrome.com/native-client
http://research.google.com/pubs/archive/34913.pdf
https://webassembly.org/
https://zyedidia.github.io/papers/lfi_asplos24.pdf

Paging
I Divide memory up into small, equal-size pages
I Map virtual pages to physical pages

I Each process has separate mapping
I Allow OS to gain control on certain operations

I Read-only pages trap to OS on write
I Invalid pages trap to OS on read or write
I OS can change mapping and resume application

I Other features sometimes found:
I Hardware can set “accessed” and “dirty” bits
I Control page execute permission (+x) separately from read/write

(+rw)
I Control caching or memory consistency of page

20

Paging trade-offs

I Eliminates external fragmentation
I Simplifies allocation, free, and backing storage (swap)
I Average internal fragmentation of .5 pages per “segment”

21

Simplified allocation
gcc emacs

Disk

physical
memory

I Allocate any physical page to any process
I Can store idle virtual pages on disk

22

Paging data structures

Pages are fixed size, e.g., 4 KiB
I Least significant 12 (log2 4 Ki) bits of address are page offset
I Most significant bits are page number

23

Paging data structures

Each process has a page table
I Maps virtual page numbers (VPNs) to physical page numbers

(PPNs)
I Also includes bits for protection, validity, etc.

23

Paging data structures

On memory access:
I Translate VPN to PPN, then add offset

23

Example: Paging on PDP-11

64 KiB virtual memory, 8 KiB pages
I Separate address space for instructions & data
I I.e., can’t read your own instructions with a load

Entire page table stored in registers
I 8 Instruction page translation registers
I 8 Data page translations

Swap 16 machine registers on each context switch

24

x86 Paging
Paging enabled by bits in a control register (%cr0)
I Only privileged OS code can manipulate control registers

Normally 4 KiB pages:
I %cr3: points to physical address of 4 KiB page directory

I See pagedir_activate � in Pintos
I Page directory: 1024 PDEs (page directory entries)

I Each contains physical address of a page table
I Page table: 1024 PTEs (page table entries)

I Each contains physical address of virtual 4K page
I Page table covers 4 MiB of Virtual mem

25

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC37

x86 Paging

See old intel manual � for simplest explanation:
I Also volume 2 of AMD64 Architecture docs �

I Also volume 3A of latest intel 64 architecture manual �

26

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_02.htm
https://www.amd.com/en/search/documentation/hub.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

x86 page translation

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

*32 bits aligned onto a 4-KByte boundary

1024 PDE × 1024 PTE = 220 Pages

27

x86 page directory entry

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d)

P a g e s iz e (0 in d ic a te s 4 K B y te s)

R e s e rv e d (s e t to 0)

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite - th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e -Ta b le B a s e A d d re ss

P a g e -D i r e c t o r y E n t r y (4 -K B y t e P a g e Ta b l e)

28

x86 page table entry

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write-Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Table En ry (4-KByte Page)

P
A
T

G

t

29

x86 hardware segmentation I

x86 architecture also supports segmentation
I Segment register base + pointer val = linear address
I Page translation happens on linear addresses

Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL � 0–3)
I Paging only has two, so 0 = kernel, 1,2=supervisor, 3 = user

30

https://stackoverflow.com/questions/55506822/is-an-x86-cpu-in-kernel-mode-when-the-cpl-value-of-the-cs-register-is-equal-to-0

x86 hardware segmentation II
Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead.
I Most OSes use “flat mode” — set base = 0,

bounds = 0xffffffff in all segment registers,
then forget about it

I x86_64 architecture removes much segmentation support
Long answer: Has some fringe/incidental uses
I Keep pointer to thread-local storage w/o wasting normal

register
I 32-bit VMware runs guest OS in CPL 1 to trap stack faults
I OpenBSD used CS limit for W∧X when no PTE NX bit

31

Making paging fast I

x86 PTs require 3 memory references per load/store
I Look up page table address in page directory
I Look up physical page number (PPN) in page table
I Actually access physical page corresponding to virtual

address

32

Making paging fast II
For speed, CPU caches recently used translations
I Called a translation lookaside buffer or TLB
I Typical: 64-2k entries, 4-way to fully associative �,

95% hit rate
I Modern CPUs add second-level TLB with ∼1,024+

entries; often separate instruction and data TLBs
I Each TLB entry maps a VPN → PPN + protection

information
33

https://en.wikipedia.org/wiki/Cache_placement_policies

Making paging fast III

On each memory reference
I Check TLB, if entry present get physical address fast
I If not, walk page tables, insert in TLB for next time

(Must evict some entry)

34

TLB details I

TLB operates at CPU pipeline speed =⇒ small, fast

35

TLB details II

Complication: what to do when switching address space?
I Flush TLB on context switch (e.g., old x86)
I Tag each entry with associated process’s ID (e.g.,

MIPS)
I In general, OS must manually keep TLB valid

I Changing page table in memory won’t affect cached TLB
entry

36

TLB details III
E.g., on x86 must use invlpg instruction
I Invalidates a page translation in TLB
I Note: very expensive instruction (100–200 cycles)
I Must execute after changing a possibly used page

table entry
I Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown �)
I Requires sending an interprocessor interrupt (IPI)
I Remote processor must execute invlpg instruction

37

https://stackoverflow.com/questions/3748384/what-is-tlb-shootdown

x86 Paging Extensions I

PSE: Page size extensions
I Setting bit 7 in PDE makes a 4 MiB translation (no

PT)

38

x86 Paging Extensions II

PAE: Page address extensions
I Newer 64-bit PTE format allows 36+ bits of physical

address
I Page tables, directories have only 512 entries
I Use 4-entry Page-Directory-Pointer Table to regain 2

lost bits
I PDE bit 7 allows 2 MiB translation

39

x86 Paging Extensions III

Long mode PAE (x86-64)
I In Long mode, pointers are 64-bits
I Extends PAE to map 48 bits of virtual address (next

slide)
I Why are aren’t all 64 bits of VA usable?

40

x86 long mode paging

Sign Extend Level-4 offset

Page-Map

(PML4)

Virtual Address

Pointer Offset

Page Directory-

Offset

Page Directory Page-Table

Offset

Physical-

Page Offset

Table Table Table Table

Page
Page-

DirectoryPointer
Directory

Page-
Page-Map

Level-4

4-Kbyte

Physical

Page

01112202129303839474863

Physical

Address

PTE

PDE

PDPE

PML4E

9999

52

52

52

52

1251

CR3Page-Map L4 Base Addr

12

41

Where does the OS live? I

In its own address space?
I Can’t do this on most hardware (e.g., syscall instruction won’t

switch address spaces)
I Also would make it harder to parse syscall arguments passed as

pointers

42

Where does the OS live? II
So in the same address space as process
I Use protection bits to prohibit user code from writing kernel

Typically all kernel code, most data at same VA in every addrspace
I On x86, must manually set up page tables for this
I Usually just map kernel in contiguous virtual memory when

boot loader puts kernel into contiguous physical memory
I Some hardware puts physical memory (kernel-only) somewhere

in virtual address space
I Typically kernel goes in high memory; with signed numbers,

can mean small negative addresses (small linker relocations)

43

Pintos � memory layout

Data segment

Kernel/

User stack

Pseudo-physical memory
0xffffffff

0x00000000

0x08048000

(PHYS_BASE)
0xc0000000

BSS / Heap

Code segment

Invalid virtual addresses

44

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_3.html#SEC38

Very different MMU: MIPS
I Hardware checks TLB on application load/store

I References to addresses not in TLB trap to kernel
I Each TLB entry has the following fields:

Virtual page, Pid, Page frame, NC, D, V, Global
I Kernel itself unpaged

I All of physical memory contiguously mapped in high VM
(hardwired in CPU, not just by convention as with Pintos)

I Kernel uses these pseudo-physical addresses
I User TLB fault hander very efficient

I Two hardware registers reserved for it
I utlb miss handler can itself fault—allow paged page tables

I OS is free to choose page table format!
45

Example: Paging to disk
gcc needs a new page of memory, so OS reclaims one from emacs:
I If page is clean (i.e., also stored on disk):

I E.g., page of text from emacs binary on disk
I Can always re-read same page from binary
I So okay to discard contents now & give page to gcc

I If page is dirty (meaning memory is only copy)
I Must write page to disk first before giving to gcc

I Either way:
I Mark page invalid in emacs
I emacs will fault on next access to virtual page

I On fault, OS reads page data back from disk into new page,
maps new page into emacs, resumes executing

46

Paging in day-to-day use

I Demand paging
I Growing the stack
I BSS page allocation
I Shared text
I Shared libraries
I Shared memory
I Copy-on-write (fork, mmap, etc.)
I Q: Which pages should have global bit set on x86?

47

