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Virtual Memory

Chapter II
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Paging

I Use disk to simulate larger virtual than physical mem
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Working set model

#
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virtual address
I Disk much, much slower than memory

I Goal: run at memory speed, not disk speed
I 80/20 rule: 20% of memory gets 80% of memory accesses

I Keep the hot 20% in memory
I Keep the cold 80% on disk
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Paging challenges
How to resume a process after a fault?
I Need to save state and resume
I Process may have been in the middle of an instruction!

What to fetch from disk?
I Just needed page or more?

What to eject?
I How to allocate physical pages amongst processes?
I Which of a particular process’s pages to keep in

memory?
6



Re-starting instructions I

Hardware must allow resuming after a fault
I Hardware provides kernel with information about page

fault
I Faulting virtual address (In %cr2 reg on x86—may see it if you

modify Pintos page_fault and use fault_addr)
I Address of instruction that caused fault
I Was the access a read or write? Was it an instruction fetch?

Was it caused by user access to kernel-only memory?
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Re-starting instructions II

Observation: Idempotent instructions are easy to restart
I E.g., simple load or store instruction can be restarted
I Just re-execute any instruction that only accesses one

address
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Re-starting instructions III

Complex instructions must be re-started, too
I E.g., x86 move string instructions
I Specify src, dst, count in %esi, %edi, %ecx

registers
I On fault, registers adjusted to resume where move left

off
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What to fetch

Bring in page that caused page fault:
I Pre-fetch surrounding pages?

I Reading two disk blocks approximately as fast as reading one
I As long as no track/head switch, seek time dominates
I If application exhibits spacial locality, then big win to store and read

multiple contiguous pages
I Also pre-zero unused pages in idle loop

I Need 0-filled pages for stack, heap, anonymously mmapped memory
I Zeroing them only on demand is slower
I Hence, many OSes zero freed pages while CPU is idle
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Selecting physical pages I

I May need to eject some pages
I May also have a choice of physical pages
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Superpages
I How should OS make use of “large” mappings

I x86 has 2/4MiB pages that might be useful
I Alpha has even more choices: 8KiB, 64KiB, 512KiB, 4MiB

I Sometimes more pages in L2 cache than TLB entries
I Don’t want costly TLB misses going to main memory
I Try cpuid � tool to find CPU’s TLB configuration on linux…

then compare to cache size reported by lscpu �

I Or have two-level TLBs
I Want to maximize hit rate in faster L1 TLB

I OS can transparently support superpages [Navarro] �

I “Reserve” appropriate physical pages if possible
I Promote contiguous pages to superpages
I Does complicate evicting (esp. dirty pages) – demote
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Minor vs Major Page faults

Linux-specific description:
MAJFLT Major faults are the number of page faults that

caused Linux to read a page from disk on behalf
of the process.

MINFLT Minor faults are the number of faults that Linux
could fulfill without resorting to a disk read.
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Straw man: FIFO eviction

I Evict oldest fetched page in system
I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
I 3 physical pages: 9 page faults
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Straw man: FIFO eviction

I Evict oldest fetched page in system
I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
I 3 physical pages: 9 page faults
I 4 physical pages: 10 page faults
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Belady’s Anomaly

I More physical memory doesn’t always mean fewer faults
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Optimal page replacement
I What is optimal (if you knew the future)?

I Replace page that will not be used for longest period of time
I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
I With 4 physical pages:

I What do we do when an OS can’t predict the future?
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LRU page replacement
I Approximate optimal with least recently used
I Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
I With 4 physical pages: 8 page faults

I Problem 1: Can be pessimal — example?

I Looping over memory (then want MRU eviction)

I Problem 2: How to implement?
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Straw man LRU implementations

I Stamp PTEs with timer value
I E.g., CPU has cycle counter
I Automatically writes value to PTE on each page access
I Scan page table to find oldest counter value = LRU page
I Problem: Would double memory traffic!

I Keep doubly-linked list of pages
I On access remove page, place at tail of list
I Problem: again, very expensive

I What to do?
I Just approximate LRU, don’t try to do it exactly
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Clock algorithm
I Use accessed bit supported by most hardware

I E.g., x86 will write 1 to A bit in PTE on first access
I Software managed TLBs like MIPS can do the same

I Do FIFO but skip
accessed pages

I Keep pages in circular FIFO list
I Scan:

I page’s A bit = 1, set to 0
& skip

I else if A = 0, evict
I A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1
A = 0
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Clock algorithm (continued)
I Large memory may be a problem

I Most pages referenced in long interval
I Add a second clock hand

I Two hands move in lockstep
I Leading hand clears A bits
I Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1

A = 1

I Can also take advantage of hardware Dirty bit
I Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),

(Accessed, Clean), or (Accessed, Dirty)
I Consider clean pages for eviction before dirty

I Or use n-bit accessed count instead just A bit
I On sweep: count = (A << (n − 1)) | (count >> 1)
I Evict page with lowest count
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Other replacement algorithms
I Random eviction

I Dirt simple to implement
I Not overly horrible (avoids Belady & pathological cases)

I LFU (least frequently used) eviction
I Instead of just A bit, count # times each page accessed
I Least frequently accessed must not be very useful

(or maybe was just brought in and is about to be used)
I Decay usage counts over time (for pages that fall out of usage)

I MFU (most frequently used) algorithm
I Because page with the smallest count was probably just brought in

and has yet to be used
I Neither LFU nor MFU used very commonly
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Naïve paging

I Naïve page replacement: 2 disk I/Os per page fault
22



Page buffering

I Idea: reduce # of I/Os on the critical path
I Keep pool of free page frames

I On fault, still select victim page to evict
I But read fetched page into already free page
I Can resume execution while writing out victim page
I Then add victim page to free pool

I Can also yank pages back from free pool
I Contains only clean pages, but may still have data
I If page fault on page still in free pool, recycle
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Page allocation
I Allocation can be global or local
I Global allocation doesn’t consider page ownership

I E.g., with LRU, evict least recently used page of any proc
I Works well if P1 needs 20% of memory and P2 needs 70%:

P1 P2

I Doesn’t protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)

I Local allocation isolates processes (or users)
I Separately determine how much memory each process should have
I Then use LRU/clock/etc. to determine which pages to evict within

each process
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Thrashing

I Processes require more memory than system has
I Each time one page is brought in, another page, whose contents will

soon be referenced, is thrown out
I Processes will spend all of their time blocked, waiting for pages to be

fetched from disk
I Disk at 100% utilization, but system not getting much useful work

done
I What we wanted: virtual memory the size of disk with access

time the speed of physical memory
I What we got: memory with access time of disk
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Reasons for thrashing
I Access pattern has no temporal locality (past 6= future)

(80/20 rule has broken down)
I Hot memory does not fit in physical memory

P1

memory

I Each process fits individually, but too many for system
P1 P2

P3 P4
P5 P6

P7 P8
P9P10

P11P12
P13P14

P15P16

memory
I At least this case is possible to address
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Multiprogramming & Thrashing

I Must shed load when thrashing
27



Dealing with thrashing
I Approach 1: working set

I Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

I Or: how much memory does the process need in order to make
reasonable progress (its working set)?

I Only run processes whose memory requirements can be satisfied
I Approach 2: page fault frequency

I Thrashing viewed as poor ratio of fetch to work
I PFF = page faults / instructions executed
I If PFF rises above threshold, process needs more memory.

Not enough memory on the system? Swap out.
I If PFF sinks below threshold, memory can be taken away

28



Working sets

wo
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time

Transitions

I Working set changes across phases
I Baloons during phase transitions
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Calculating the working set
I Working set: all pages that process will access in next

T time
I Can’t calculate without predicting future

I Approximate by assuming past predicts future
I So working set ≈ pages accessed in last T time

I Keep idle time for each page
I Periodically scan all resident pages in system

I A bit set? Clear it and clear the page’s idle time
I A bit clear? Add CPU consumed since last scan to idle time
I Working set is pages with idle time < T
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Two-level scheduler
I Divide processes into active & inactive

I Active – means working set resident in memory
I Inactive – working set intentionally not loaded

I Balance set: union of all active working sets
I Must keep balance set smaller than physical memory

I Use long-term scheduler [recall from lecture 4]
I Moves procs active → inactive until balance set small enough
I Periodically allows inactive to become active
I As working set changes, must update balance set

I Complications
I How to chose idle time threshold T?
I How to pick processes for active set
I How to count shared memory (e.g., libc.so)
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Some complications of paging
I What happens to available memory?

I Some physical memory tied up by kernel VM structures
I What happens to user/kernel crossings?

I More crossings into kernel
I Pointers in syscall arguments must be checked

(can’t just kill process if page not present—might need to page in)
I What happens to IPC?

I Must change hardware address space
I Increases TLB misses
I Context switch flushes TLB entirely on old x86 machines

(But not on MIPS because MIPS tags TLB entries with PID)
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64-bit address spaces
I Recall x86-64 only has 48-bit virtual address space
I What if you want a 64-bit virtual address space?

I Straight hierarchical page tables not efficient
I But software TLBs (like MIPS) allow other possibilities

I Solution 1: Hashed page tables
I Store Virtual → Physical translations in hash table
I Table size proportional to physical memory
I Clustering makes this more efficient [Talluri] �

I Solution 2: Guarded page tables [Liedtke] �

I Omit intermediary tables with only one entry
I Add predicate in high level tables, stating the only virtual address

range mapped underneath + # bits to skip

33
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Recall typical virtual address space
kernel

stack

heap

uninitialized data (bss)

initialized data

read-only data

code (text)

breakpoint
I Dynamically allocated

memory goes in heap
I Top of heap called

breakpoint
I Addresses between

breakpoint and stack all
invalid
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Early VM system calls

I OS keeps “Breakpoint” – top of heap
I Memory regions between breakpoint & stack fault on access

I char *brk (const char *addr);
I Set and return new value of breakpoint

I char *sbrk (int incr);
I Increment value of the breakpoint & return old value

I Can implement malloc in terms of sbrk
I But hard to “give back” physical memory to system
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Memory mapped files
kernel

stack

heap

uninitialized data (bss)

initialized data

read-only data

code (text)

mmapped
regions

Other memory objects are
placed between heap and
stack
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mmap system call
void *mmap (void *addr, size_t len,

int prot, int flags, int fd,
off_t offset)

I Map file specified by fd at virtual address addr
I If addr is null, let kernel choose the address
I prot – protection of region

I OR of prot_exec, prot_read, prot_write, prot_none
I flags

I map_anon – anonymous memory (fd should be -1)
I map_private – modifications are private
I map_shared – modifications seen by everyone
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More VM system calls
I int msync(void *addr, size_t len, int

flags);
I Flush changes of mmapped file to backing store

I int munmap(void *addr, size_t len)
I Removes memory-mapped object

I int mprotect(void *addr, size_t len, int
prot)

I Changes protection on pages to bitwise or of some PROT_…values
I int mincore(void *addr, size_t len, char

*vec)
I Returns in vec which pages present
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Exposing page faults

struct sigaction {
union { /* signal handler */

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);

};
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

};
int sigaction (int sig, const struct sigaction *act,

struct sigaction *oact)

Can specify function to run on SIGSEGV
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Example: OpenBSD/i386 siginfo
struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds; int sc_edi; int sc_esi;
int sc_ebp; int sc_ebx; int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */

int sc_trapno; int sc_err;
};

Linux uses ucontext_t – same idea, just nested structures that
won’t all fit on one slide
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VM tricks at user level

I Combination of mprotect/sigaction very powerful
I Can use OS VM tricks in user-level programs [Appel] �

I E.g., fault, unprotect page, return from signal handler
I Technique used in object-oriented databases

I Bring in objects on demand
I Keep track of which objects may be dirty
I Manage memory as a cache for much larger object DB

I Other interesting applications
I Useful for some garbage collection algorithms
I Snapshot processes (copy on write)
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4.4 BSD VM system [McKusick] �

I Each process has a vmspace structure containing
I vm_map – machine-independent virtual address space
I vm_pmap – machine-dependent data structures
I statistics – e.g., for syscalls like getrusage ()

I vm_map is a linked list of vm_map_entry structs
I vm_map_entry covers contiguous virtual memory
I points to vm_object struct

I vm_object is source of data
I e.g. vnode object for memory mapped file
I points to list of vm_page structs (one per mapped page)
I shadow objects point to other objects for copy on write
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https://learning.oreilly.com/library/view/the-design-and/9780768685275/chapter05.html


4.4 BSD VM data structures

vm_map_entry

vm_map_entry

vm_map_entry

vm_map_entry

shadow
object

vm_page

object

vnode/

shadow
object

vm_page

vnode/

object

vnode/

object

vm_page

vm_page

vm_page

vm_page

vm_page

vm_map

vm_pmap

stats

vmspace
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Pmap (machine-dependent) layer

I Pmap layer holds architecture-specific VM code
I VM layer invokes pmap layer

I On page faults to install mappings
I To protect or unmap pages
I To ask for dirty/accessed bits

I Pmap layer is lazy and can discard mappings
I No need to notify VM layer
I Process will fault and VM layer must reinstall mapping

I Pmap handles restrictions imposed by cache
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Example uses
I vm_map_entry structs for a process

I r/o text segment → file object
I r/w data segment → shadow object → file object
I r/w stack → anonymous object

I New vm_map_entry objects after a fork:
I Share text segment directly (read-only)
I Share data through two new shadow objects

(must share pre-fork but not post-fork changes)
I Share stack through two new shadow objects

I Must discard/collapse superfluous shadows
I E.g., when child process exits
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What happens on a fault?
I Traverse vm_map_entry list to get appropriate entry

I No entry? Protection violation? Send process a SIGSEGV

I Traverse list of [shadow] objects
I For each object, traverse vm_page structs
I Found a vm_page for this object?

I If first vm_object in chain, map page
I If read fault, install page read only
I Else if write fault, install copy of page

I Else get page from object
I Page in from file, zero-fill new page, etc.
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Paging in day-to-day use
I Demand paging

I Read pages from vm_object of executable file
I Copy-on-write (fork, mmap, etc.)

I Use shadow objects
I Growing the stack, BSS page allocation

I A bit like copy-on-write for /dev/zero
I Can have a single read-only zero page for reading
I Special-case write handling with pre-zeroed pages

I Shared text, shared libraries
I Share vm_object (shadow will be empty where read-only)

I Shared memory
I Two processes mmap same file, have same vm_object (no shadow)
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