
INF333 - Operating Systems
Lecture X

Burak Arslan
ext-inf333@burakarslan.com �

Galatasaray Üniversitesi

Lecture X
2024-05-08

mailto:ext-inf333@burakarslan.com

Course website

burakarslan.com/inf333 �

1

https://burakarslan.com/inf333

Based On

cs149.stanford.edu �

cs212.stanford.edu �

OSC-10 Slides �

2

https://cs149.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html

The load Instruction

3

The load Instruction

Reads data from memory

I …or from a cache on the way to memory

4

The load Instruction

Reads data from memory
I …or from a cache on the way to memory

4

What is a Cache?

A cache is;
I A hardware implementation detail that does not

impact the output of a program, only its
performance.

I On-chip storage that maintains a copy of a subset of
the values in memory

5

What is a Cache?

Caches;
I Reduce length of stalls (ie memory access latency)

I Processors run efficiently when data they access is cached
I Reduce memory access latency when processors access

data that they have recently accessed!
I Operate at the granularity of cache lines.

6

Intel Core i7-14700K Dieshot �

7

https://www.techpowerup.com/review/intel-core-i7-14700k/2.html

Modern processors replicate contents of memory
in local caches

Problem: Processors can observe different values for the same
memory location

8

Important memory system properties I

Coherence Concerns accesses to a single memory location
I There is a total order on all updates
I Must obey program order if access from only

one CPU
I There is bounded latency before everyone sees a

write

9

Important memory system properties II
Consistency Concerns ordering across memory locations

I Even with coherence, different CPUs can see the
same write happen at different times

I Sequential consistency is what matches our
intuition (As if operations from all CPUs
interleaved on one CPU)

I Many architectures offer weaker consistency
I Yet well-defined weaker consistency can still be

sufficient to implement the thread API contract
from L05S34-I,II �

10

Shared address space model

Fact: Threads perform reads/writes on shared variables.
Expectation: 1. Thread 1 stores to address X

2. Later, thread 2 reads from X
(and observes update of value by thread 1)

11

Shared address space model

Reading a value from X should return the last value written to X
by any processor

…only guaranteed with the use of synchronization primitives
I e.g., ensuring mutual exclusion via use of locks
I using atomics
I etc.

12

Shared address space model

Reading a value from X should return the last value written to X
by any processor
…only guaranteed with the use of synchronization primitives
I e.g., ensuring mutual exclusion via use of locks
I using atomics
I etc.

12

Shared address space model

Problems with the intuition:
I Define “last”!

I What if two processors write at the same time?
I What if a write by P1 is followed by a read from P2 so close in time

that it is impossible to communicate the occurrence of the write to
P2 in time?

In a sequential program, “last” is determined by program order (not
time)
I Holds true within one thread of a parallel program

13

Shared address space model
But!!
I We need to come up with a meaningful way to

describe order across threads in a parallel program

14

Shared address space model
But!!
I We need to come up with a meaningful way to

describe order across threads in a parallel program

14

Implementation: Cache Coherence Invariants

For any memory address x, at any given time period
(epoch):
I Single-Writer, Multiple-Read (SWMR) Invariant

I RW epoch: there exists only a single processor that may write to x
(and can also read it)

I RO epoch: some number of processors that may only read x
I Data-Value Invariant (write serialization)

I The value of the memory address at the start of an epoch is the same
as the value of the memory location at the end of its last read-write
epoch

15

Shared address space model: Two Adversaries

They can rearrange instruction execution within epoch
boundaries:
I The processor
I The compiler

So both need to be informed about our intentions

16

Multicore cache coherence
Bus-based approaches
I “Snoopy” protocols, each CPU listens to memory bus
I Use write-through and invalidate when you see write

bits
I Bus-based schemes limit scalability

Modern CPUs use networks
(eg, hypertransport, infinity fabric, QPI, UPI)
I CPUs pass each other messages about cache lines

17

MESI coherence protocol
I Modified

I Exactly one cache has a valid copy
I That copy is dirty (needs to be written back to memory)
I Must invalidate all copies in other caches before entering this state

I Exclusive
I Same as Modified except the cache copy is clean

I Shared
I One or more caches and memory have a valid copy

I Invalid
I Doesn’t contain any data

I Owned (for enhanced “MOESI” protocol)
I Cached copy may be dirty (like Modified state)
I But have to broadcast modifications (sort of like Shared state)
I Can have one owned + multiple shared copies of cache line

18

Core and Bus Actions
Actions performed by CPU core:
I Read
I Write
I Evict (modified/owned? must write back)

Transactions on bus (or interconnect):
I Read: without intent to modify, data can come from memory

or another cache
I Read-exclusive: with intent to modify, must invalidate all other

cache copies
I Writeback: contents put on bus and memory is updated

19

cc-NUMA I

Old machines used dance hall architectures
I Any CPU can “dance with” any memory equally

An alternative: Non-Uniform Memory Access (NUMA)
I Each CPU has fast access to some “close” memory
I Slower to access memory that is farther away
I Use a directory to keep track of who is caching what

20

cc-NUMA II

Originally for esoteric machines with many CPUs
I But AMD and then Intel integrated memory controller

into CPU
I Faster to access memory controlled by the local socket

(or even local die in a multi-chip module)
cc-NUMA = cache-coherent NUMA

21

Real World Coherence Costs
I See [David] � for a great reference. Xeon results:

I 3 cycle L1, 11 cycle L2, 44 cycle LLC, 355 cycle local RAM
I If another core in same socket holds line in modified state:

I load: 109 cycles (LLC + 65)
I store: 115 cycles (LLC + 71)
I atomic CAS1: 120 cycles (LLC + 76)

I If a core in a different socket holds line in modified state:
I NUMA load: 289 cycles
I NUMA store: 320 cycles
I NUMA atomic CAS: 324 cycles

I But only a partial picture
I Could be faster because of out-of-order execution
I Could be slower if interconnect contention or multiple hops

1Compare And swap
22

https://www.scs.stanford.edu/24wi-cs212/sched/readings/david-synchronization.pdf

NUMA and spinlocks
I Test-and-set spinlock has several advantages

I Simple to implement and understand
I One memory location for arbitrarily many CPUs

I But also has disadvantages
I Lots of traffic over memory interconnect (especially w. > 1 spinner)
I Not necessarily fair (lacks bounded waiting)
I Even less fair on a NUMA machine

I Idea 1: Avoid spinlocks altogether (today)
I Idea 2: Reduce interconnect traffic with better spinlocks (next

lecture)
I Design lock that spins only on local memory
I Also gives better fairness

23

Amdahl’s law
T (n) = T (1)

(
B +

1

n(1− B)

)
I Expected speedup limited when only part of a task is sped up

I T (n): the time it takes n CPU cores to complete the task
I B: the fraction of the job that must be serial

I Even with massive multiprocessors, lim
n→∞

= B · T (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tim
e

of CPUs
I Places an ultimate limit on parallel speedup

I Problem: synchronization increases serial section size
24

Locking basics
mutex_t m;

lock(&m);
cnt = cnt + 1; /* critical section */
unlock(&m);

I Only one thread can hold a mutex at a time
I Makes critical section atomic

I Recall the thread API contract from L05S34 �

I All access to global data must be protected by a mutex
I Global = two or more threads touch data and at least one writes

I Means must map each piece of global data to one mutex
I Never touch the data unless you locked that mutex

25

Locking granularity
I Consider two lookup implementations for global hash table:

struct list *hash_tbl[1021];

fine-grained locking
mutex_t bucket_lock[1021];

...
int index = hash(key);
mutex_lock(&bucket_lock[index]);
struct list_elem *pos = list_begin (hash_tbl[index]);
/* ... walk list and find entry ... */
mutex_unlock(&bucket_lock[index]);

I Which implementation is better?

26

Locking granularity
I Consider two lookup implementations for global hash table:

struct list *hash_tbl[1021];

coarse-grained locking
mutex_t m;

...
mutex_lock(&m);
struct list_elem *pos = list_begin (hash_tbl[hash(key)]);
/* ... walk list and find entry ... */
mutex_unlock(&m);

I Which implementation is better?

27

Locking granularity

Fine-grained locking admits more parallelism
I E.g., imagine network server looking up values in hash

table
I Parallel requests will usually map to different hash

buckets
I So fine-grained locking should allow better speedup

28

Locking granularity II
I When might coarse-grained locking be better?

I Suppose you have global data that applies to whole hash table
struct hash_table {
size_t num_elements; /* num items in hash table */
size_t num_buckets; /* size of buckets array */
struct list *buckets; /* array of buckets */

};

I Read num_buckets each time you insert
I Check num_elements on insert, possibly expand buckets & rehash
I Single global mutex would protect these fields

I Can you avoid serializing lookups to growable hash
table?

29

Locking granularity II
I When might coarse-grained locking be better?

I Suppose you have global data that applies to whole hash table
struct hash_table {
size_t num_elements; /* num items in hash table */
size_t num_buckets; /* size of buckets array */
struct list *buckets; /* array of buckets */

};

I Read num_buckets each time you insert
I Check num_elements on insert, possibly expand buckets & rehash
I Single global mutex would protect these fields

I Can you avoid serializing lookups to growable hash
table?

29

Readers-writers problem

I Recall a mutex allows access in only one thread
I But a data race occurs only if:

I Multiple threads access the same data, and
I At least one of the accesses is a write

I How to allow multiple readers or one single writer?
I Need lock that can be shared amongst concurrent readers

I Can implement using other primitives (next slides)
I Keep integer i – # of readers or -1 if held by writer
I Protect i with mutex
I Sleep on condition variable when can’t get lock

30

Implementing shared locks
struct sharedlk {

int i; /* # shared lockers, or -1 if exclusively locked */
mutex_t m; cond_t c;

};
void AcquireExclusive (sharedlk *sl) {
lock (&sl->m);
while (sl->i) { wait (&sl->m, &sl->c); }
sl->i = -1;
unlock (&sl->m);

}
void AcquireShared (sharedlk *sl) {
lock (&sl->m);
while (&sl->i < 0) { wait (&sl->m, &sl->c); }
sl->i++;
unlock (&sl->m);

}
31

Implementing shared locks (continued)
void ReleaseShared (sharedlk *sl) {
lock (&sl->m);
if ((--(sl->i)) == 0) { signal (&sl->c); }
unlock (&sl->m);

}
void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);

}

Any issues with this implementation?

I Prone to starvation of writer (no bounded waiting)

32

Implementing shared locks (continued)
void ReleaseShared (sharedlk *sl) {
lock (&sl->m);
if ((--(sl->i)) == 0) { signal (&sl->c); }
unlock (&sl->m);

}
void ReleaseExclusive (sharedlk *sl) {
lock (&sl->m);
sl->i = 0;
broadcast (&sl->c);
unlock (&sl->m);

}

Any issues with this implementation?
I Prone to starvation of writer (no bounded waiting)

32

Review: Test-and-set spinlock
struct var {

int lock;
int val;

};
void atomic_inc (var *v) {

while (test_and_set (&v->lock));
v->val++;
v->lock = 0;

}
void atomic_dec (var *v) {

while (test_and_set (&v->lock));
v->val--;
v->lock = 0;

}

I Is this code correct without sequential consistency?
33

Memory reordering danger
I Suppose no sequential consistency (& don’t compensate)
I Hardware could violate program order

Program order on CPU #1 View on CPU #2
v->lock = 1; v->lock = 1;
register = v->val;
v->val = register + 1;
v->lock = 0; v->lock = 0;

/* danger */;
v->val = register + 1;

I If atomic_inc called at /* danger */, bad val ensues!

34

35

Ordering requirements
void atomic_inc (var *v) {

while (test_and_set (&v->lock));
v->val++;
/* danger */
v->lock = 0;

}
I Must ensure all CPUs see the following:

1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

I How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)

I xchgl instruction always “locked”, ensuring barrier

I How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores
I Definitely need compiler barrier

36

Ordering requirements
void atomic_inc (var *v) {

while (test_and_set (&v->lock));
v->val++;
/* danger */
v->lock = 0;

}
I Must ensure all CPUs see the following:

1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

I How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked”, ensuring barrier

I How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores
I Definitely need compiler barrier

36

Ordering requirements
void atomic_inc (var *v) {

while (test_and_set (&v->lock));
v->val++;
asm volatile ("sfence" ::: "memory");
v->lock = 0;

}
I Must ensure all CPUs see the following:

1. v->lock = 1 ran before v->val was read and written
2. v->lock = 0 ran after v->val was written

I How does #1 get assured on x86?
I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked”, ensuring barrier

I How to ensure #2 on x86?
I Might need fence instruction after, e.g., non-temporal stores
I Definitely need compiler barrier 36

Memory barriers/fences
I Fortunately, consistency need not overly complicate code

I If you do locking right, only need a few fences within locking code
I Code will be easily portable to new CPUs

I Most programmers should stick to mutexes
I But advanced techniques may require lower-level code

I Later this lecture will see some wait-free algorithms
I Also important for optimizing special-case locks

(E.g., linux kernel rw_semaphore, …)
I Algorithms often explained assuming sequential consistency

I Must know how to use memory fences to implement correctly
I E.g., see [Howells] � for how Linux deals with memory consistency
I And another plug for Why Memory Barriers �

I Next: How C11 allows portable low-level code
37

http://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.scs.stanford.edu/24wi-cs212/sched/readings/why-memory-barriers.pdf

Atomics and portability
I Lots of variation in atomic instructions, consistency models,

compiler behavior
I Changing the compiler or optimization level can invalidate code

I Different CPUs today: Your (non-Apple) laptop is x86, while
your cell phone uses ARM

I x86: Total Store Order Consistency Model, CISC
I arm: Relaxed Consistency Model, RISC

I Could make it impossible to write portable kernels and
applications

I Fortunately, the C11 standard � has builtin support for
atomics �

I If not on by default, use gcc -std=gnu11 or -std=gnu17
I Also available in C++11 �, but won’t discuss today

38

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://en.cppreference.com/w/c/atomic
http://en.cppreference.com/w/cpp/atomic/memory_order

Background: C memory model [C11] �

I Within a thread, many evaluations are sequenced
I E.g., in “f1(); f2();”, evaluation of f1 is sequenced before f2

I Across threads, some operations synchronize with others
I E.g., releasing mutex m synchronizes with a subsequent acquire m

I Evaluation A happens before B, which we’ll write A→ B, when:
I A is sequenced before B (in the same thread),
I A synchronizes with B,
I A is dependency-ordered before B (ignore for now—means A has release

semantics and B consume semantics for same value),
I There is another operation X such that A→ X → B.

39

http://port70.net/~nsz/c/c11/n1570.html#5.1.2.4

C11 Atomics: Big picture
I C11 says a data race produces undefined behavior (UB)

I A write conflicts with a read or write of same memory location
I Two conflicting operations race if not ordered by happens before
I Undefined can be anything (e.g., delete all your files, …)
I Think UB okay in practice? See [Wang] �, [Lattner] �

I Spinlocks (and hence mutexes that internally use spinlocks)
synchronize across threads

I Synchronization adds happens before arrows, avoiding data races
I Yet hardware supports other means of synchronization
I C11 atomics provide direct access to synchronized lower-level

operations
I E.g., can get compiler to issue lock prefix in some cases

40

http://pdos.csail.mit.edu/papers/kint:osdi12.pdf
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

C11 Atomics: Basics
I Include new <stdatomic.h> header
I New _Atomic type qualifier: e.g., _Atomic int foo;

I Convenient aliases: atomic_bool, atomic_int, atomic_ulong, …
I Must initialize specially:

#include <stdatomic.h>
_Atomic int global_int = ATOMIC_VAR_INIT(140);

...
Atomic_(int) *dyn = malloc(sizeof(*dyn));
atomic_init(dyn, 140);

I Compiler emits read-modify-write instructions for atomics
I E.g., +=, -=, |=, &=, ^=, ++, -- do what you would hope
I Act atomically and synchronize with one another

I Also functions including atomic_fetch_add,
atomic_compare_exchange_strong, …

41

Locking and atomic flags
I Implementations might use spinlocks internally for most

atomics
I Could interact badly with interrupt/signal handlers
I Can check if ATOMIC_INT_LOCK_FREE, etc., macros defined
I Fortunately modern CPUs don’t require this

I atomic_flag is a special type guaranteed lock-free
I Boolean value without support for loads and stores
I Initialize with: atomic_flag mylock = ATOMIC_FLAG_INIT;
I Only two kinds of operation possible:

I _Bool atomic_flag_test_and_set(volatile atomic_flag *obj);
I void atomic_flag_clear(volatile atomic_flag *obj);

I Above functions guarantee sequential consistency (atomic operation
serves as memory fence, too)

42

Exposing weaker consistency
enum memory_order { /*...*/ };
_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *obj, memory_order order);
void atomic_flag_clear_explicit(

volatile atomic_flag *obj, memory_order order);
C atomic_load_explicit(

const volatile A *obj, memory_order order);
void atomic_store_explicit(

volatile A *obj, C desired, memory_order order);
bool atomic_compare_exchange_weak_explicit(

A *obj, C *expected, C desired,
memory_order succ, memory_order fail);

I Atomic functions have _explicit variants
I These guarantee coherence but not sequential consistency
I May allow compiler to generate faster code

43

Memory ordering
I Six possible memory_order values:

1. memory_order_relaxed: no memory ordering
2. memory_order_consume: super tricky, see [Preshing] � for discussion
3. memory_order_acquire: for start of critical section
4. memory_order_release: for end of critical section
5. memory_order_acq_rel: combines previous two
6. memory_order_seq_cst: full sequential consistency

I Also have fence operation not tied to particular atomic:
void atomic_thread_fence(memory_order order);

I Suppose thread 1 releases and thread 2 acquires
I Thread 1’s preceding accesses can’t move past release store
I Thread 2’s subsequent accesses can’t move before acquire load
I Warning: other threads might see a completely different order

44

http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/

Types of memory fences2

Load-Load Load-Store

Store-Load Store-Store

Seq_cst fence

Acquire fence

Release fence

Acq_rel fence

I X -Y fence = operations of type X sequenced before the fence
happen before operations of type Y sequenced after the fence

2Credit to [Preshing] � for explaining it this way
45

http://preshing.com/20120913/acquire-and-release-semantics/

Example: Atomic counters
_Atomic(int) packet_count;

void recv_packet(…) {
...

atomic_fetch_add_explicit(&packet_count, 1,
memory_order_relaxed);...

}

I Need to count packets accurately
I Don’t need to order other memory accesses across threads
I Relaxed memory order can avoid unnecessary overhead

46

Example: Producer, consumer 1
struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_thread_fence(memory_order_release);
/* Prior loads+stores happen before subsequent stores */
atomic_store_explicit(&msg_ready, 1, memory_order_relaxed);

}
struct message *recv(void) {

_Bool ready = atomic_load_explicit(&msg_ready,
memory_order_relaxed);

if (!ready) return NULL;
atomic_thread_fence(memory_order_acquire);
/* Prior loads happen before subsequent loads+stores */
return &msg_buf;

}
47

Example: Producer, consumer 2
struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_store_explicit(&msg_ready, 1, memory_order_release);

}
struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready, memory_order_acquire);
if (!ready) return NULL;
return &msg_buf;

}

I This is potentially faster than previous example
I E.g., atomic other stores after send can be moved before msg_buf

48

Example: Test-and-set spinlock

void spin_lock(atomic_flag *lock) {
while(atomic_flag_test_and_set_explicit(lock,

memory_order_acquire));
}

void spin_unlock(atomic_flag *lock) {
atomic_flag_clear_explicit(lock, memory_order_release);

}

49

Example: Better test-and-set spinlock
void spin_lock(atomic_bool *lock) {

while(atomic_exchange_explicit(lock, 1,
memory_order_acquire)) {

while(atomic_load_explicit(lock, memory_order_relaxed))
__builtin_ia32_pause(); /* x86-specific */

}
}

void spin_unlock(atomic_bool *lock) {
atomic_store_explicit(lock, 0, memory_order_release);

}

I See [Rigtorp] � for a good discussion

50

https://rigtorp.se/spinlock/

Avoiding Locks

51

Recall producer/consumer (lecture 3)
/* PRODUCER */
for (;;) {
item *nextProduced

= produce_item();

mutex_lock (&mutex);
while (count == BUF_SIZE)
cond_wait(&nonfull, &mutex);

buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}

/* CONSUMER */
for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

52

Eliminating locks
I One use of locks is to coordinate multiple updates of single

piece of state
I How to remove locks here?

I Factor state so that each variable only has a single writer
I Producer/consumer example revisited

I Assume one producer, one consumer
I Why do we need count variable, written by both?

To detect buffer full/empty
I Have producer write in, consumer write out (both _Atomic)
I Use in/out to detect buffer state

(sacrifice one buffer slot to distinguish completely full and empty)
I But note next example busy-waits, which is less good

53

Lock-free producer/consumer
atomic_int in, out;
void producer (void *ignored) {

for (;;) { item *nextProduced = produce_item();
while (((in + 1) % BUF_SIZE) == out) thread_yield();
buffer[in] = nextProduced;
in = (in + 1) % BUF_SIZE;

} }
void consumer (void *ignored) {

for (;;) { while (in == out) thread_yield();
nextConsumed = buffer[out];
out = (out + 1) % BUF_SIZE;
consume_item (nextConsumed);

} }

[Note fences not needed because no relaxed atomics]
54

Version with relaxed atomics
void producer (void *ignored) {

for (;;) { item *nextProduced = produce_item ();
int slot = atomic_load_explicit(&in, memory_order_relaxed);
int next = (slot + 1) % BUF_SIZE;
while (atomic_load_explicit(&out, memory_order_acquire) == next)
thread_yield(); // Could you use relaxed? ^ ^ ^ ^

buffer[slot] = nextProduced;
atomic_store_explicit(&in, next, memory_order_release);

}
}
void consumer (void *ignored) {
// Use memory_order_acquire to load in (for latest buffer[myin])
// Use memory_order_release to store out

}

55

Non-blocking synchronization
I Design algorithm to avoid critical sections

I Any threads can make progress if other threads are preempted
I Which wouldn’t be the case if preempted thread held a lock

I Requires that hardware provide the right kind of atomics
I Simple test-and-set is insufficient
I Atomic compare and swap is good: CAS (mem, old, new)

If *mem == old, then swap *mem←→new and return true, else
false

I Can implement many common data structures
I Stacks, queues, even hash tables

I Can implement any algorithm on right hardware
I Need operation such as atomic compare and swap

(has property called consensus number =∞ [Herlihy] �)
I Entire kernels have been written without locks [Greenwald] �

56

https://www.scs.stanford.edu/24wi-cs212/sched/readings/wait-free.pdf
https://www.scs.stanford.edu/24wi-cs212/sched/readings/cache-kernel-dcas.pdf

Example: non-blocking stack
struct item {

/* data */
_Atomic(struct item *) next;

};
typedef _Atomic(struct item *) stack_t;

void atomic_push (stack_t *stack, item *i) {
do { i->next = *stack; } while (!CAS (stack, i->next, i));

}
item *atomic_pop (stack_t *stack) {

item *i;
do { i = *stack; } while (!CAS (stack, i, i->next));
return i;

}

57

Wait-free stack issues
A B Cstack

C

A' C

B C

B garbage

Meanwhile, memory of object A

gets recycled for A' of same type

stack

stack

stack

stack

I “ABA” race in pop if other thread pops, re-pushes i
I Can be solved by counters � or hazard pointers � to delay re-use

58

http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf
http://www.research.ibm.com/people/m/michael/ieeetpds-2004.pdf

“Benign” races
I Could also eliminate locks by having race conditions
I Maybe you care more about speed than correctness

++hits; /* each time someone accesses web site */
I Maybe you think you can get away with the race (NOT! �,

really �)
if (!initialized) {

lock (m);
if (!initialized) {

initialize ();
atomic_thread_fence (memory_order_release); /* why? */
initialized = 1;

}
unlock (m);

}
59

http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

“Benign” races

But don’t do this [Vyukov] �, [Boehm] �! Not benign at all
I Again, UB is really bad! Like use-after-free or array

overflow bad
I If needed for efficiency, use relaxed-memory-order

atomics

60

https://www.scs.stanford.edu/24wi-cs212/sched/readings/benign-races.pdf
https://www.scs.stanford.edu/24wi-cs212/sched/readings/boehm-miscompile-benign.pdf

Read-copy update [McKenney] �

I Some data is read way more often than written
I Routing tables consulted for each forwarded packet
I Data maps in system with 100+ disks (updated on disk failure)

I Optimize for the common case of reading without lock
I E.g., global variable: routing_table *rt;
I Call lookup (rt, route); with no lock

I Update by making copy, swapping pointer
routing_table *newrt = copy_routing_table (rt);
update_routing_table (newrt);
atomic_thread_fence (memory_order_release);
rt = newrt;

I Is RCU really safe? Stay tuned for the next lecture…
61

http://www.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

Next class

I The exciting conclusion of RCU
I Spoiler: safe on all architectures except on alpha

I Building a better spinlock
I What interface should kernel provide for sleeping locks?
I Deadlock
I Scalable interface design

62

	Cache coherence – the hardware view
	Synchronization and memory consistency review
	C11 Atomics
	Avoiding locks

