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Course Structure
This is a project-driven course – you will have to do a lot
of hands-on coding work!

I %70 attendance is required
I %60 of grade: 3 or 4 homeworks + 1 homework =

All of the travaux pratiques
I %40 of grade: Final exam
I No midterm
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Two Courses in One

I This course: Operating Systems
I TP course: Linux Fundamentals
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Which type of OS?

I Preemtpive vs Cooperative Multitasking
I Single-user vs multi-user
I Kernel vs unikernel
I Local vs distributed
I Single Process vs Multi process
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Course Highlights

I Threads & Processes
I Concurrency & Synchronization
I Scheduling
I Virtual Memory
I I/O

I File systems
I Networking1

1We will have some very rudimentary coverage since we have dedicated networking courses
7



Course Goals
By the end of the semester, we hope to have taught you
about:
I Caching, concurrency, memory management, I/O
I Dealing with complexity, big codebases

And improved on your skills about:
I Being better team players
I Email manners
I LATEX
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Course Goals

Fact:

Knowing about OS internals will make you a
more effective software engineer
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Homeworks

What kind of Code?
I We will write lots of C
I Mostly kernelspace but userspace as well
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Homeworks

You will work in groups of 2:
I Same team until the end of semester
I Course discussion between groups is encouraged
I However you are supposed to do your work in isolation
I Duplicate homeworks get 0 with no questions asked!
I Non-compiling projects get 0 with no questions asked!
I Don’t miss the deadlines!
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Homeworks

You will hand in reports where you detail your solution:
I We will verify that you actually implemented your

design
I Happy path coders will lose points – do proper error

handling!
I Messy code will also cost you points – we need to

understand your code!
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Operating Systems

A Gentle Introduction
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Intro to OS

A fundamental goal of the OS is to
elevate the hardware at hand to a
well-defined abstraction level
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Intro to OS

Some examples:
NIC Ethernet, WiFi, Infiniband, VPN, …

Connectivity USB, Bluetooth, PCI, Thunderbolt, Serial, …
Display HDMI, USB-C, VGA, DVI, DisplayPort, …

Input Keyboard, Mouse, Gamepad, Touchpad, …
FS xfs, zfs, ext4, ntfs, apfs, ufs, ...
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Intro to OS

In the dark ages of consumer operating systems, ...

... we used DOS!

I DOS apps like video games came with drivers for:
I Different graphics standards (EGA, VGA, Tandy, etc.)
I Different sound cards (SoundBlaster, AdLib, etc.)
I Memory manager (DOS/4GW)
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Intro to OS

Modern operating systems have come a long way!

A modern OS provides:
I A proper layer between applications and hardware
I (Almost) Universal interfaces to the outside world
I Some level of protection against threats from local / external

malfunctioning / malicious software.
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Intro to OS

It’s a mature field:
I We all use a small number of well-known operating

systems
I Greenfield OS projects are a rare occurence, hardly

have any impact

18



Intro to OS

However the so-called mature OS are dealing with huge
problems;
I Security (hacking is still a thing!)
I Scalability (making use of growing hardware capacity)
I Efficiency (performance per watt)
I Difficulty to retrofit to new types of devices that

would require new approaches
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Back to basics

Let’s go back to basics and retrace the steps of
the modern operating system
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Back to basics
Unikernel

A unikernel is a statically linked
operating system:
I The system runs one program at a

time
I No need for memory protection
I No precautions against malicious

users or programs

OS

App

Hardware
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Back to basics
Unikernel

In the general case, this is furthest from
optimal as possible:
I HUGE amount of code since it

needs to have drivers, scheduler,
memory manager, etc. etc.

I Can not run other tasks when idle
or eg. CPU is waiting for IO

I Bad use of its users time: It’s now
up to the user to switch between
tasks manually

OS

App

Hardware
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Back to basics
Unikernel

Not safe at all:
I It’s up to the app to let other apps

run (cooperative multitasking)
I The app can damage other users’

data (single-user)
I The app has full access to the

hardware (imagine dragons!)

OS

App

Hardware
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Back to basics
Unikernel

No program needs to be compatible
with another:
I May use own file system
I May require specific hardware

configuration
I That’s why most of the code in

early consumer operating systems
consisted of the file system

OS

App

Hardware
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Back to basics
Unikernel

Also not an interesting topic of
discussion:
I Today, any of you could write one

given all the hardware manuals and
enough time

I It’s like writing games for very old
game consoles!

OS

App

Hardware
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Back to basics
OS comes with Hardware

What if OS was “part of” the hardware
instead of the application?
I User programs are now more

loosely coupled with the OS
I Talks to the OS instead of the

hardware
I Of course, there may be exceptions...

Hardware

Kernel

user app
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Back to basics
Multitasking

Maybe we could try to run other tasks
when possible?
I Now we need a mechanism to

protect tasks from each other
I What if a process wants to

manipulate other users’ data?
I What if a process wants to use all

the storage capacity?

Hardware

Kernel

emacs firefox
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Back to basics
Multitasking

Solutions:
I Preemptive scheduling: Stop

assuming well-mannered processes
I Memory protection: Stop

processes from reading other
processes’ memory

Hardware

Kernel

emacs firefox
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Back to basics
Multiple Users

Maybe we let more than one person use
the computer as well?
I Now we need a mechanism to

protect users from each other
I What if a process doesn’t want to

let others do some work?
I What if a process wants to

manipulate other processes’
memory?

Hardware

Kernel

emacs firefoxgcc
alice bob charlie

24



Back to basics
Multiple Users

Solutions:
I User authentication, permissions
I Virtual memory:

I Allocate memory when actually used
I Each process gets own address space
I Swapping other processes’ memory

when required
Hardware

Kernel

emacs firefoxgcc
alice bob charlie
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A Modern OS

Made of two essential components:
Kernel For privileged operations

Userland For everything else

⇒ Userland is actually optional.
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A Modern OS
The part of userland that interacts with its user(s) is
called a shell.
Examples
I Bash is a command line shell.
I KDE is a graphical shell (among other subsystems)
I SSH is the Secure SHell
I etc.

⇒ Userland is actually optional.
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A Modern OS

The user processes run in user mode where:
I The need for direct access to hardware is obviated by

abstractions
I Every resource use attempt is verified

In this design, only the OS components are trusted to do
the right thing.
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A Modern OS

I Most code runs as user-level
processes (P[1-4])

I The kernel runs in privileged
mode

I Manages processes
I Mediates access to hardware

P1 P2 P3 P4user
kernel

driver driver driver

NIC console disk

VM IPC
scheduler

file
system

sockets
TCP/IP
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A Modern OS

This course will focus on the following operating systems that are:
I Preemptive (not cooperative)
I Multi-user (not single user)
I Local (not distributed)
I Multi-address space / distinct kernel (not unikernel)
I Multi-process, with hardware support for memory protection

We will use Linux or similar OS to illustrate these and other
concepts.
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Computers

What exactly are they?
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Computers

memory

CPU
disk 

controller
USB controller

graphics 

adapter

disk mouse keyboard
printer monitor

system bus

Computer-system operation:
I One or more CPUs, device controllers connect through

common bus providing access to shared memory
I Concurrent execution of CPUs and devices competing for

memory or cycles
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Computers
I I/O devices and the CPU can execute concurrently
I Each device controller is in charge of a particular device type
I Each device controller has a local buffer
I Each device controller type has an operating system device

driver to manage it
I CPU moves data from/to main memory to/from local buffers
I I/O is from the device to local buffer of controller
I Device controller informs CPU that it has finished its operation

by causing an interrupt
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Interrupts
I An interrupt transfers control to the interrupt service

routine generally, through the interrupt vector,
which contains the addresses of all the service routines

I Interrupt architecture must save the address of the
interrupted instruction

I A trap or exception is a software-generated interrupt
caused either by an error or a user request

I Operating systems are interrupt driven
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Interrupts

When an interrupt is triggered:
I The operating system preserves the state of the CPU

by storing the registers and the program counter
I Handles the interrupt
I Restores CPU state and continues whet it left off.
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Input/Output

Two methods for handling I/O:

Async After I/O starts, control
returns to user program
without waiting for I/O
completion

Sync After I/O starts, control
returns to user program
only upon I/O completion
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Input/Output
Sync Case

The synchronous case:
I Wait instruction idles the CPU until the next interrupt
I Wait loop (contention for memory access)
I At most one I/O request is outstanding at a time, no

simultaneous I/O processing
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Input/Output
Async Case

The asynchronous case:
I System call – request to the OS to allow user to wait

for I/O completion
I Device-status table contains entry for each I/O device

indicating its type, address, and state
I OS indexes into I/O device table to determine device

status and to modify table entry to include interrupt
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Storage Hierarchy

Storage systems are organized in a hierarchy
I Speed
I Latency
I Volatility
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Storage Hierarchy

Caching – copying
information into faster
storage system
Example
I Main memory can be

viewed as a cache for
secondary storage

magnetic tapes

optical disks

hard disk drives

nonvolatile memory

main memory

cache

registers
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Computer Architecture

This is the infamous von
Neumann computer

threads

of execution
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