
INF333 - Operating Systems
Lecture I

Burak Arslan
ext-inf333@burakarslan.com �

Galatasaray Üniversitesi

Lecture I
2024-02-14

mailto:ext-inf333@burakarslan.com


Course website

burakarslan.com/inf333 �

1

https://burakarslan.com/inf333


Based On

cs111.stanford.edu �

cs212.stanford.edu �

OSC-10 Slides �

2

https://cs111.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html


Book

Operating System Concepts �

Silberschatz, Galvin, Gagne

3

https://archive.org/details/operatingsystemconcepts10th/


Course Structure
This is a project-driven course – you will have to do a lot
of hands-on coding work!

I %70 attendance is required
I %60 of grade: 3 or 4 homeworks + 1 homework =

All of the travaux pratiques
I %40 of grade: Final exam
I No midterm

4



Two Courses in One

I This course: Operating Systems
I TP course: Linux Fundamentals

5



Which type of OS?

I Preemtpive vs Cooperative Multitasking
I Single-user vs multi-user
I Kernel vs unikernel
I Local vs distributed
I Single Process vs Multi process

6



Course Highlights

I Threads & Processes
I Concurrency & Synchronization
I Scheduling
I Virtual Memory
I I/O

I File systems
I Networking1

1We will have some very rudimentary coverage since we have dedicated networking courses
7



Course Goals
By the end of the semester, we hope to have taught you
about:
I Caching, concurrency, memory management, I/O
I Dealing with complexity, big codebases

And improved on your skills about:
I Being better team players
I Email manners
I LATEX

8



Course Goals

Fact:

Knowing about OS internals will make you a
more effective software engineer

9



Homeworks

What kind of Code?
I We will write lots of C
I Mostly kernelspace but userspace as well

10



Homeworks

You will work in groups of 2:
I Same team until the end of semester
I Course discussion between groups is encouraged
I However you are supposed to do your work in isolation
I Duplicate homeworks get 0 with no questions asked!
I Non-compiling projects get 0 with no questions asked!
I Don’t miss the deadlines!

11



Homeworks

You will hand in reports where you detail your solution:
I We will verify that you actually implemented your

design
I Happy path coders will lose points – do proper error

handling!
I Messy code will also cost you points – we need to

understand your code!

12



Operating Systems

A Gentle Introduction

13



Intro to OS

A fundamental goal of the OS is to
elevate the hardware at hand to a
well-defined abstraction level

14



Intro to OS

Some examples:
NIC Ethernet, WiFi, Infiniband, VPN, …

Connectivity USB, Bluetooth, PCI, Thunderbolt, Serial, …
Display HDMI, USB-C, VGA, DVI, DisplayPort, …

Input Keyboard, Mouse, Gamepad, Touchpad, …
FS xfs, zfs, ext4, ntfs, apfs, ufs, ...

15



Intro to OS

In the dark ages of consumer operating systems, ...

... we used DOS!

I DOS apps like video games came with drivers for:
I Different graphics standards (EGA, VGA, Tandy, etc.)
I Different sound cards (SoundBlaster, AdLib, etc.)
I Memory manager (DOS/4GW)

16



Intro to OS

In the dark ages of consumer operating systems, ...

... we used DOS!

I DOS apps like video games came with drivers for:
I Different graphics standards (EGA, VGA, Tandy, etc.)
I Different sound cards (SoundBlaster, AdLib, etc.)
I Memory manager (DOS/4GW)

16



Intro to OS

Modern operating systems have come a long way!

A modern OS provides:
I A proper layer between applications and hardware
I (Almost) Universal interfaces to the outside world
I Some level of protection against threats from local / external

malfunctioning / malicious software.

17



Intro to OS

It’s a mature field:
I We all use a small number of well-known operating

systems
I Greenfield OS projects are a rare occurence, hardly

have any impact

18



Intro to OS

However the so-called mature OS are dealing with huge
problems;
I Security (hacking is still a thing!)
I Scalability (making use of growing hardware capacity)
I Efficiency (performance per watt)
I Difficulty to retrofit to new types of devices that

would require new approaches

19



Back to basics

Let’s go back to basics and retrace the steps of
the modern operating system

20



Back to basics
Unikernel

A unikernel is a statically linked
operating system:
I The system runs one program at a

time
I No need for memory protection
I No precautions against malicious

users or programs

OS

App

Hardware

21



Back to basics
Unikernel

In the general case, this is furthest from
optimal as possible:
I HUGE amount of code since it

needs to have drivers, scheduler,
memory manager, etc. etc.

I Can not run other tasks when idle
or eg. CPU is waiting for IO

I Bad use of its users time: It’s now
up to the user to switch between
tasks manually

OS

App

Hardware

21



Back to basics
Unikernel

Not safe at all:
I It’s up to the app to let other apps

run (cooperative multitasking)
I The app can damage other users’

data (single-user)
I The app has full access to the

hardware (imagine dragons!)

OS

App

Hardware

21



Back to basics
Unikernel

No program needs to be compatible
with another:
I May use own file system
I May require specific hardware

configuration
I That’s why most of the code in

early consumer operating systems
consisted of the file system

OS

App

Hardware

21



Back to basics
Unikernel

Also not an interesting topic of
discussion:
I Today, any of you could write one

given all the hardware manuals and
enough time

I It’s like writing games for very old
game consoles!

OS

App

Hardware

21



Back to basics
OS comes with Hardware

What if OS was “part of” the hardware
instead of the application?
I User programs are now more

loosely coupled with the OS
I Talks to the OS instead of the

hardware
I Of course, there may be exceptions...

Hardware

Kernel

user app

22



Back to basics
Multitasking

Maybe we could try to run other tasks
when possible?
I Now we need a mechanism to

protect tasks from each other
I What if a process wants to

manipulate other users’ data?
I What if a process wants to use all

the storage capacity?

Hardware

Kernel

emacs firefox

23



Back to basics
Multitasking

Solutions:
I Preemptive scheduling: Stop

assuming well-mannered processes
I Memory protection: Stop

processes from reading other
processes’ memory

Hardware

Kernel

emacs firefox

23



Back to basics
Multiple Users

Maybe we let more than one person use
the computer as well?
I Now we need a mechanism to

protect users from each other
I What if a process doesn’t want to

let others do some work?
I What if a process wants to

manipulate other processes’
memory?

Hardware

Kernel

emacs firefoxgcc
alice bob charlie

24



Back to basics
Multiple Users

Solutions:
I User authentication, permissions
I Virtual memory:

I Allocate memory when actually used
I Each process gets own address space
I Swapping other processes’ memory

when required
Hardware

Kernel

emacs firefoxgcc
alice bob charlie

24



A Modern OS

Made of two essential components:
Kernel For privileged operations

Userland For everything else

⇒ Userland is actually optional.

25



A Modern OS
The part of userland that interacts with its user(s) is
called a shell.
Examples
I Bash is a command line shell.
I KDE is a graphical shell (among other subsystems)
I SSH is the Secure SHell
I etc.

⇒ Userland is actually optional.

26



A Modern OS

The user processes run in user mode where:
I The need for direct access to hardware is obviated by

abstractions
I Every resource use attempt is verified

In this design, only the OS components are trusted to do
the right thing.

27



A Modern OS

I Most code runs as user-level
processes (P[1-4])

I The kernel runs in privileged
mode

I Manages processes
I Mediates access to hardware

P1 P2 P3 P4user
kernel

driver driver driver

NIC console disk

VM IPC
scheduler

file
system

sockets
TCP/IP

28



A Modern OS

This course will focus on the following operating systems that are:
I Preemptive (not cooperative)
I Multi-user (not single user)
I Local (not distributed)
I Multi-address space / distinct kernel (not unikernel)
I Multi-process, with hardware support for memory protection

We will use Linux or similar OS to illustrate these and other
concepts.

29



Computers

What exactly are they?

30



Computers

memory

CPU
disk 

controller
USB controller

graphics 

adapter

disk mouse keyboard
printer monitor

system bus

Computer-system operation:
I One or more CPUs, device controllers connect through

common bus providing access to shared memory
I Concurrent execution of CPUs and devices competing for

memory or cycles
31



Computers
I I/O devices and the CPU can execute concurrently
I Each device controller is in charge of a particular device type
I Each device controller has a local buffer
I Each device controller type has an operating system device

driver to manage it
I CPU moves data from/to main memory to/from local buffers
I I/O is from the device to local buffer of controller
I Device controller informs CPU that it has finished its operation

by causing an interrupt

32



Interrupts
I An interrupt transfers control to the interrupt service

routine generally, through the interrupt vector,
which contains the addresses of all the service routines

I Interrupt architecture must save the address of the
interrupted instruction

I A trap or exception is a software-generated interrupt
caused either by an error or a user request

I Operating systems are interrupt driven
33



Interrupts

When an interrupt is triggered:
I The operating system preserves the state of the CPU

by storing the registers and the program counter
I Handles the interrupt
I Restores CPU state and continues whet it left off.

34



Input/Output

Two methods for handling I/O:

Async After I/O starts, control
returns to user program
without waiting for I/O
completion

Sync After I/O starts, control
returns to user program
only upon I/O completion

35



Input/Output
Sync Case

The synchronous case:
I Wait instruction idles the CPU until the next interrupt
I Wait loop (contention for memory access)
I At most one I/O request is outstanding at a time, no

simultaneous I/O processing

36



Input/Output
Async Case

The asynchronous case:
I System call – request to the OS to allow user to wait

for I/O completion
I Device-status table contains entry for each I/O device

indicating its type, address, and state
I OS indexes into I/O device table to determine device

status and to modify table entry to include interrupt

37



Storage Hierarchy

Storage systems are organized in a hierarchy
I Speed
I Latency
I Volatility

38



Storage Hierarchy

Caching – copying
information into faster
storage system
Example
I Main memory can be

viewed as a cache for
secondary storage

magnetic tapes

optical disks

hard disk drives

nonvolatile memory

main memory

cache

registers

39



Computer Architecture

This is the infamous von
Neumann computer

threads

of execution

c
a

c
h

e

devices

instructions

and

data

memory

I/O
 R

e
q

u
e

s
t

D
a

ta

In
te

rru
p

t

DMA

CPU (*N)

DMA

data

movement

instruction

execution

40


	Intro to OS
	Back to basics
	A Modern OS
	Computers
	Interrupts
	Input/Output
	Storage Hierarchy
	Computer Architecture

