
INF333
Operating Systems

Lecture II

Burak Arslan
ext-inf333@burakarslan.com �

Galatasaray Üniversitesi

Lecture II
2025-02-19

mailto:ext-inf333@burakarslan.com

Course website

burakarslan.com/inf333 �

1

https://burakarslan.com/inf333

Based On

cs111.stanford.edu �

cs212.stanford.edu �

OSC-10 Slides �

2

https://cs111.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html

File Systems

A Gentle Introduction

3

File Systems

Memory (RAM)

I Fast, less space, more
expensive

I Byte-addressable: can
quickly access any byte of
data by address, but not
individual bits by address

I Not persistent: cannot store
data between power-offs

Storage

I Slower, more space,
cheaper

I Sector-addressable: cannot
read/write just one byte of
data – can only read/write
“sectors” of data at a time

I Persistent: stores data
between power-offs

4

File Systems

File systems are designed to work on hardware like
hard disk drives or solid state drives
I They only understand sectors.
I This is the only api we are ever going to get:

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

5

File Systems

But!
I We want files and folders and permissions and links

and …
I We need a software layer that translates between file

system primitives and sector operations

I This layer is called a file system.

6

File Systems

But!
I We want files and folders and permissions and links

and …
I We need a software layer that translates between file

system primitives and sector operations
I This layer is called a file system.

6

File Systems

I File systems translate file
operations to sector operations

I They sit on top of protocols
like SATA, USB, NVME etc. Hardware

Kernel

driver

file syst.

file ops
user app

7

File Systems
File systems implement operations like:
I Creating a new file on disk
I Looking up the location of a file on disk
I Reading/editing all or part of an existing file from disk

– e.g., sequential/random access creating folders on
disk

I Getting the contents of folders on disk
I etc.

8

File Systems

File systems are still a very active field.

Certainly not “a solved problem”
though pretty mature implementations exist

9

File Systems

Problems that file systems have to deal with:
Space Management

Fast access to files (maximize locality)
Sharing space between users
Efficient use of disk space

Naming How do users find files?
Reliability Information must survive OS crashes and hardware

failures.
Protection Isolation between users, controlled sharing.

10

File Systems

File systems also deal with two classes of data:
I Payload (contents of files)
I Metadata (file names, permissions, directory contents,

etc.)

Since both are held in persistent storage, some blocks
must be reserved for metadata.

11

File Systems

Many designs exist, some wildly different than
others.

From here onwards, we will focus on native
Linux filesystems

12

File Systems
Terminology

A filesystem generally defines its own unit of data, a
”block”, that it reads/writes at a time.
Sector Hardware storage unit
Block Filesystem storage unit (1 or more sectors) –

software abstraction related to storage
Page Kernel’s I/O unit, another software abstraction

related to I/O in general — be it RAM, block
storage, pipes, etc.

13

File Systems
Terminology

Sector sizes are medium-dependent and sometimes customizable:

nvme id-ns /dev/nvme0n1 | grep lbads
lbaf 0 : ms:0 lbads:9 rp:0x2 (in use)
lbaf 1 : ms:0 lbads:12 rp:0x1

14

File Systems
Terminology

Similarly, block sizes are fs-dependent and can be tuned 1.

xfs_info /dev/nvme0n1p2
meta-data=/dev/nvme0n1p2 isize=512 agcount=4, agsize=7864320 blks

sectsz=512 attr=2, projid32bit=1 crc=1 finobt=1, sparse=1
rmapbt=1 reflink=1 bigtime=1 inobtcount=1 nrext64=0

data = bsize=4096 blocks=31457280, imaxpct=25
= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

1It’s very tricky to do so though! eg. XFS: Mount overrides sunit and swidth options �

15

https://superuser.com/a/809631

File Systems
Terminology

A page is the I/O unit of the kernel – it’s the same everywhere.

$ getconf PAGESIZE
4096

Changing it is a whole project:
I HugePages support in Linux �

I This got stabilized circa 2010: Huge pages: Introduction �

16

https://docs.kernel.org/admin-guide/mm/hugetlbpage.html
https://lwn.net/Articles/374424/

File Systems
Terminology

A correctly-tuned block size is an essential factor in the
performance of storage systems.
I Fewer transfer operations if larger
I But smaller files may read in more data than necessary

s0 s1 s2 s3 s4 s5 s6 s7
b0 b1 b2 b3

...

17

File Systems
Terminology

An inode (”index node”) is a data structure that
describes a file-system object such as a file or a directory.
stat /etc/passwd
File: /etc/passwd
Size: 2325 Blocks: 33 IO Block: 2560 regular file

Device: 0,25 Inode: 10004479 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/root) Gid: (0/root)
Access: 2024-02-06 08:39:38.557196113 +0300
Modify: 2024-02-03 00:56:48.431922259 +0300
Change: 2024-02-03 00:56:48.431922259 +0300
Birth: 2024-02-03 00:56:48.431922259 +0300

18

File Systems
Terminology

A directory is a list of inodes with their assigned names.
The list includes an entry for itself (.), its parent (..), and each of
its children.

ls -if /etc
67108993 . 67109039 inittab.d

128 .. 134462512 nanorc
134348929 pam.d 68298267 gentoo-release ...
201326721 gpm 203011796 protocols
67512281 subgid 67109044 .pwd.lock

...

19

File Systems
Terminology

Discussion
Can a file be retrieved by its inode? �

20

https://unix.stackexchange.com/a/92900

File Systems
Terminology

Discussion
What happens when more than one directory contains an
entry for the same inode?

21

File Systems
Terminology

It’s called a hard link:
$ echo foo > a
$ stat a

File: a Size: 4
Device: 0,32 Inode: 2646944 Links: 1

$ ln a b
$ stat b

File: b Size: 4
Device: 0,32 Inode: 2646944 Links: 2

$ cat a
foo
$ echo bar > a
$ cat b
bar
$

22

File Systems
Terminology

Discussion
Creating hard links to directories is not allowed. Why do
you think this is the case?

23

File Systems

An inode is ”scheduled for deletion” when its refcount
reaches zero
I When a file is opened, it will remain on the fs until

closed
I Deleting a file immediately after opening it is a nice

way to implement temporary files on Linux.

24

Remaining parts of the OS

A not-so-gentle continuation

You can handle it now

25

Unix System Calls
I Applications still need to work with the hardware
I OS supplies a well-defined system call interface

Example:
I Apps normally don’t write to storage directly, but to

designated regions in the storage device sanctioned by
the OS

I Uses system calls to (try to) obtain access to said
addresses.

26

Unix System Calls

To open a file in a FS with
the open() system call:
I App sets up the

system call id and
arguments and lets
the kernel know

I The kernel executes
the requested
operation and returns
the result

User Processes

System Call Interface
User space

Kernel space

open(...)

i
open()

 implementation

 .

 .

 .

 return

...

...

...

...

open

27

Unix System Calls
Closer look: printf()

$ cat lec01.c
#include <stdio.h>
int main(int argc, char **argv) {
printf("Hello from %s!\n", argv[0]);
return 0;

}
$ gcc -o lec01 lec01.c && ./lec01
Hello from lec01!

printf() call in libc
"Hello from %s!\n"

"Hello from lec01!\n"

write() syscall

userspace

...

kernelspace
28

Unix System Calls
Closer look: open()

In Unix, applications “open” files (or devices) by name;
I int open(char *path, int flags, /*int mode*/...);

I Returns a file descriptor (fd) – used for all I/O to
files and file-like objects

29

Unix System Calls
Closer look: open()

int open(char *path, int flags, /*int mode*/...);
I flags: O_RDONLY, O_WRONLY, O_RDWR

I O_CREAT: create the file if non-existent
I O_EXCL: (w. O_CREAT) err out if file already exists
I O_TRUNC: Truncate the file
I O_APPEND: Start writing from end of file

I mode: final argument with O_CREAT, see chmod

30

Unix System Calls
Error handling

I What if open fails? Returns -1 (invalid fd)
I Most system calls return -1 on failure

I Specific kind of error in global thread-local int errno
I In retrospect, bad design decision for threads/modularity

I #include <sys/errno.h> for possible values
I perror function prints human-readable message
I Use the strace command 2 to log all the system calls that a

process makes

2Linux-only but equivalents exist on all popular platforms
31

File Descriptors

A file descriptor is a simple integer that is:
I Inherited by processes when one process spawns

another,
I By convention, descriptors 0, 1, and 2 have special

meaning:
I 0 – “standard input” (stdin in C)
I 1 – “standard output” (stdout, printf default in C)
I 2 – “standard error” (stderr, perror default in C)
I Normally all three attached to terminal

32

File Descriptors
type.c

void
typefile (char *filename)
{

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

33

	File Systems
	Unix System Calls
	File Descriptors

