
INF333 - Operating Systems
Lecture II

Burak Arslan
ext-inf333@burakarslan.com �

Galatasaray Üniversitesi

Lecture II
2024-02-21

mailto:ext-inf333@burakarslan.com

Course website

burakarslan.com/inf333 �

1

https://burakarslan.com/inf333

Based On

cs111.stanford.edu �

cs212.stanford.edu �

OSC-10 Slides �

2

https://cs111.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html

File Systems

A Gentle Introduction

3

File Systems

Memory (RAM)

I Fast, less space, more
expensive

I Byte-addressable: can
quickly access any byte of
data by address, but not
individual bits by address

I Not persistent: cannot store
data between power-offs

Storage

I Slower, more space,
cheaper

I Sector-addressable: cannot
read/write just one byte of
data – can only read/write
“sectors” of data at a time

I Persistent: stores data
between power-offs

4

File Systems

File systems are designed to work on hardware like
hard disk drives or solid state drives
I They only understand sectors.
I This is the only api we are ever going to get:

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

5

File Systems

But!
I We want files and folders and permissions and links …
I We need a software layer that translates between file

system primitives and sector operations

I This layer is called a file system.

6

File Systems

But!
I We want files and folders and permissions and links …
I We need a software layer that translates between file

system primitives and sector operations
I This layer is called a file system.

6

File Systems

I File systems translate file
operations to sector operations

I They sit on top of protocols
like SATA, USB, NVME etc. Hardware

Kernel

driver

file syst.

file ops
user app

7

File Systems
File systems implement operations like:
I Creating a new file on disk
I Looking up the location of a file on disk
I Reading/editing all or part of an existing file from disk

– e.g., sequential/random access creating folders on
disk

I Getting the contents of folders on disk
I etc.

8

File Systems

File systems are still a very active field.

Certainly not “a solved problem”
though pretty mature implementations exist

9

File Systems

Problems that file systems have to deal with:
Space Management

Fast access to files (maximize locality)
Sharing space between users
Efficient use of disk space

Naming How do users find files?
Reliability Information must survive OS crashes and hardware

failures.
Protection Isolation between users, controlled sharing.

10

File Systems

File systems also deal with two classes of data:
I Payload (contents of files)
I Metadata (file names, permissions, directory contents,

etc.)

Since both are held in persistent storage, some blocks
must store data other than file contents.

11

File Systems

Many designs exist, some wildly different than
others.

From here onwards, we will focus on native
Linux filesystems

12

File Systems
Terminology

A filesystem generally defines its own unit of data, a
”block”, that it reads/writes at a time.
Sector Hardware storage unit
Block Filesystem storage unit (1 or more sectors) –

software abstraction related to storage
Page Kernel’s I/O unit, another software abstraction

related to I/O in general — be it RAM, block
storage, pipes, etc.

13

File Systems
Terminology

Sector sizes are medium-dependent and sometimes customizable:

nvme id-ns /dev/nvme0n1 | grep lbads
lbaf 0 : ms:0 lbads:9 rp:0x2 (in use)
lbaf 1 : ms:0 lbads:12 rp:0x1

14

File Systems
Terminology

Similarly, block sizes are fs-dependent and can be tuned 1.

xfs_info /dev/nvme0n1p2
meta-data=/dev/nvme0n1p2 isize=512 agcount=4, agsize=7864320 blks

sectsz=512 attr=2, projid32bit=1 crc=1 finobt=1, sparse=1
rmapbt=1 reflink=1 bigtime=1 inobtcount=1 nrext64=0

data = bsize=4096 blocks=31457280, imaxpct=25
= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2

= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

1It’s very tricky to do so though! eg. XFS: Mount overrides sunit and swidth options �

15

https://superuser.com/a/809631

File Systems
Terminology

A page is the I/O unit of the kernel – it’s the same everywhere.

$ getconf PAGESIZE
4096

Changing it is a whole project:
I HugePages support in Linux �

I This got stabilized circa 2010: Huge pages: Introduction �

16

https://docs.kernel.org/admin-guide/mm/hugetlbpage.html
https://lwn.net/Articles/374424/

File Systems
Terminology

A correctly-tuned block size is an essential factor in the
performance of storage systems.
I Fewer transfer operations if larger
I But smaller files may read in more data than necessary

s0 s1 s2 s3 s4 s5 s6 s7
b0 b1 b2 b3

...

17

File Systems
Terminology

An inode (”index node”) is a data structure that
describes a file-system object such as a file or a directory.
stat /etc/passwd
File: /etc/passwd
Size: 2325 Blocks: 33 IO Block: 2560 regular file

Device: 0,25 Inode: 10004479 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/root) Gid: (0/root)
Access: 2024-02-06 08:39:38.557196113 +0300
Modify: 2024-02-03 00:56:48.431922259 +0300
Change: 2024-02-03 00:56:48.431922259 +0300
Birth: 2024-02-03 00:56:48.431922259 +0300

18

File Systems
Terminology

A directory is a list of inodes with their assigned names.
The list includes an entry for itself (.), its parent (..), and each of
its children.

ls -if /etc
67108993 . 67109039 inittab.d

128 .. 134462512 nanorc
134348929 pam.d 68298267 gentoo-release ...
201326721 gpm 203011796 protocols
67512281 subgid 67109044 .pwd.lock

...

19

File Systems
Terminology

Discussion
Can a file be retrieved by its inode? �

20

https://unix.stackexchange.com/a/92900

File Systems
Terminology

Discussion
What happens when more than one directory contains an
entry for the same inode?

21

File Systems
Terminology

It’s called a hard link:
$ echo foo > a
$ stat a

File: a Size: 4
Device: 0,32 Inode: 2646944 Links: 1

$ ln a b
$ stat b

File: b Size: 4
Device: 0,32 Inode: 2646944 Links: 2

$ cat a
foo
$ echo bar > a
$ cat b
bar
$

22

File Systems
Terminology

Discussion
Creating hard links to directories is not allowed. Why do
you think this is the case?

23

File Systems

An inode is ”scheduled for deletion” when its refcount
reaches zero
I When a file is opened, it will remain on the fs until

closed
I Deleting a file immediately after opening it is a nice

way to implement temporary files on Linux.

24

Remaining parts of the OS

A not-so-gentle continuation

You can handle it now

25

System Calls
I Applications still need to work with the hardware to

make progress
I OS supplies a well-defined system call interface
I For example: Apps normally don’t write to storage

directly, but to designated regions in the storage
device sanctioned by the OS

I Uses system calls to (try to) obtain access to said
addresses.

26

System Calls

To open a file in a FS with
the open() system call:
I App sets up the

system call id and
arguments and lets
the kernel know

I The kernel executes
the requested
operation and returns
the result

User Processes

System Call Interface
User space

Kernel space

open(...)

i
open()

 implementation

 .

 .

 .

 return

...

...

...

...

open

27

System Calls
Closer look: printf()

$ cat lec01.c
#include <stdio.h>
int main(int argc, char **argv) {
printf("Hello from %s!\n", argv[0]);
return 0;

}
$ gcc -o lec01 lec01.c && ./lec01
Hello from lec01!

printf() call in libc
"Hello from %s!\n"

"Hello from lec01!\n"

write() syscall

userspace

...

kernelspace
28

System Calls
Closer look: open()

I Applications “open” files (or devices) by name
I int open(char *path, int flags, /*int

mode*/...);
I Returns a file descriptor (fd) – used for all I/O to

files and file-like objects

29

System Calls
Error handling

I What if open fails? Returns -1 (invalid fd)
I Most system calls return -1 on failure

I Specific kind of error in global int errno
I In retrospect, bad design decision for threads/modularity

I #include <sys/errno.h> for possible values
I perror function prints human-readable message
I Use the strace command 2 to log all the system calls that a

process makes

2Linux-only but equivalents exist on all popular platforms
30

File Descriptors

A file descriptor is a simple integer that is:
I Inherited by processes when one process spawns

another,
I By convention, descriptors 0, 1, and 2 have special

meaning:
I 0 – “standard input” (stdin in ANSI C)
I 1 – “standard output” (stdout, printf in ANSI C)
I 2 – “standard error” (stderr, perror in ANSI C)
I Normally all three attached to terminal

31

File Descriptors
type.c

void
typefile (char *filename)
{

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

32

Protection
Example: CPU preemption

This is a way to implement preemptive scheduling:
I Kernel programs timer to interrupt every 10 ms.

This is called a tick. 3

I Kernel sets interrupt vector back to kernel
I Regains control whenever interval timer fires
I User code is not allowed to do so

I Result: No process can monopolize the CPU

3It’s popular yet suboptimal way: See “(Nearly) full tickless operation in [Linux] 3.10” �

33

https://lwn.net/Articles/549580/

Protection
Example: CPU preemption

This is technique doesn’t protect against:
I A malicious user constantly starting new processes
I A malicious user constantly allocating memory

Possible solutions:
I Yell at the guy who’s doing it (no, seriously)
I Remove that app from the play store
I Enforce per-user resource limits

34

Protection
Address translation

Goal:

Protect memory of one program from actions of
another

35

Protection
Address translation

Definitions:
I Address space: all memory locations a program can name
I Virtual address: addresses in process’ address space
I Physical address: address of real memory
I Translation: map virtual to physical addresses

36

Protection
Address translation

I Translation done on every load, store, and instruction fetch
I Modern CPUs do this in hardware for speed

I Idea: If you can’t name it, you can’t touch it
I Ensure one process’ translations don’t include any other process’

memory

37

Protection
More memory protection

I CPU allows kernel-only virtual addresses
I Kernel typically part of all address spaces,

e.g., to handle system call in same address space
I But must ensure apps can’t touch kernel memory

I CPU lets OS disable (invalidate) particular virtual
addresses

I Catch and halt buggy program that makes wild accesses
I Make virtual memory seem bigger than physical

(e.g., bring a page in from disk only when accessed)

38

Protection
More memory protection

I CPU enforced read-only virtual addresses useful
I E.g., allows sharing of code pages between processes
I Plus many other optimizations

I CPU enforced execute disable of VAs
I Makes certain code injection attacks harder

39

Protection
Different system contexts I

At any point, a CPU (core) is in one of several contexts:
I User-level – CPU in user mode running application
I Kernel process context – i.e., running kernel code on

behalf of a particular process
I E.g., performing system call, handling exception (memory fault,

numeric exception, etc.)
I Or executing a kernel-only process (e.g., network file server)

40

Protection
Different system contexts II

I Kernel code not associated with a process
I Timer interrupt (hardclock)
I Device interrupt
I “Softirqs”, “Tasklets” (Linux-specific terms)

I Context switch code – change which process is
running

I Requires changing the current address space

I Idle – nothing to do (bzero pages, put CPU in
low-power state)

41

Protection
Transitions between contexts

CPU context transitions:
I User → kernel process context: syscall, page fault, …
I User/process context → interrupt handler: hardware
I Process context → user/context switch: return
I Process context → context switch: sleep
I Context switch → user/process context

42

Protection
Resource allocation & performance

Multitasking permits higher resource utilization.

Simple example:
I Process downloading large file mostly waits for

network
I You play a game while downloading the file
I Higher CPU utilization than if just downloading

43

Protection
Transitions between contexts

Complexity arises with cost of switching:

Example: Say disk 1,000 times slower than memory:
I 1 GiB memory in machine
I 2 Processes want to run, each use 1 GiB
I Can switch processes by swapping them out to disk
I Faster to run one at a time than keep context

switching
44

	File Systems
	System Calls
	File Descriptors
	Protection

