INF333 - Operating Systems

Lecture Il

Burak Arslan

ext-inf3330@burakarslan.comez

Galatasaray Universitesi

Lecture Il
2025-02-26


mailto:ext-inf333@burakarslan.com

Course website

burakarslan.com /inf333 &


https://burakarslan.com/inf333

Based On

cslll.stanford.edu=
cs212.stanford.edu =
OSC-10 Slides =


https://cs111.stanford.edu
https://cs212.stanford.edu
https://codex.cs.yale.edu/avi/os-book/OS10/slide-dir/index.html

Protection

Protection: Mechanisms to isolate programs



Protection

Pre-emption

Pre-emption:
» Give application a resource, take it away if needed
elsewhere



Protection

Mediation

Interposition /mediation:
» Place OS between application and resources
» Keep track all pieces that application allowed to use

» On every access, ensure that access is valid/allowed



Protection
CPU Privilege Modes

CPU Privilege Modes aka. Rings in Intel parlance:
Privileged & unprivileged modes in CPUs

» Applications un in unprivileged mode (user mode)

» OS runs in privileged mode (supervisor/kernel mode)

» Protection operations can only be done
in privileged mode

P Rings 0 (real mode) through 4 (user mode), later negative
rings were added!

INot hardware-enforced



Protection

Example: CPU preemption

CPU preemption:
Protection mechanism to prevent monopolizing CPU



Protection

Example: CPU preemption
How?
One way is for the kernel to program a timer to interrupt
every, say, 10 ms

» Must be in supervisor mode to write to appropriate
1/0O registers

» User code cannot re-program interval timer

» This is called a tick. °

2|t's popular yet suboptimal way: See “(Nearly) full tickless operation in [Linux] 3.10"


https://lwn.net/Articles/549580/

Protection

Example: CPU preemption
Kernel sets interrupt service routine to return to kernel:
» Regains control whenever interval timer fires
» Gives CPU to another process if someone else needs it

» No way for user code to hijack interrupt handler

Result: Cannot monopolize CPU with infinite loop

» At worst get 1/N of CPU with N CPU-hungry
processes



Protection

Example: CPU preemption

This is technique doesn’t protect against:
» A malicious user constantly starting new processes
» A malicious user constantly allocating memory
Possible solutions:
» Yell at the guy who's doing it (no, seriously)
» Remove that app from the play store

» Enforce per-user resource limits

10



Protection

Address translation

Goal of Address translation:

Protect memory of one program from actions of
another

11



Protection

Address translation

Definitions:
» Address space: all memory locations a program can name
» Virtual address: addresses in process’ address space
» Physical address: actual address of data in memory
» Translation: map virtual to physical addresses

12



Protection

Address translation

Translation done on every load, store, and instruction
fetch

» Modern CPUs do this in hardware for speed

Idea: If you can’t name it, you can't touch it

» Ensure one process’ translations don't include any
other process’ memory

13



Protection

More memory protection

CPU allows kernel-only virtual addresses

» Kernel typically part of all address spaces,
e.g., to handle system call in same address space

» But must ensure apps can't touch kernel memory

14



Protection

More memory protection

CPU lets OS disable (invalidate) particular virtual
addresses

» Catch and halt buggy program that makes wild
accesses

» Make virtual memory seem bigger than physical
(e.g., bring a page in from disk only when accessed)

15



Protection

More memory protection

CPU-enforced read-only virtual addresses are quite useful
» E.g., allows sharing of code pages between processes

» Plus many other optimizations

CPU-enforced "execute disable3” of VAs

» Makes certain code injection attacks harder

3chmod -x for memory pages

16



Protection

Different system contexts |

At any point, a CPU (core) is in one of several contexts:

» User-level — CPU in user mode running application
» Kernel process context — i.e., running kernel code on
behalf of a particular process
» E.g., performing system call, handling exception
(memory fault, numeric exception, etc.)
» Or executing a kernel-only process
(e.g., network file server)

17



Protection

Different system contexts |l
(cont'd)
» Kernel code not associated with a process

» Timer interrupt (hardclock)
» Device interrupt
» “Softirgs”, “Tasklets” (Linux-specific terms)

» Context switch code — change which process is
running

» Requires changing the current address space

» Idle — nothing to do (bzero pages, put CPU in
low-power state)

18



Protection

Transitions between contexts

CPU context transitions:

» User — kernel process context: syscall, page fault, ..

» User/process context — interrupt handler: hardware
» Process context — user/context switch: return
» Process context — context switch: sleep

» Context switch — user/process context

19



Protection

Resource allocation & performance

Multitasking permits higher resource utilization.

Simple example:

» Process downloading large file mostly waits for
network

» You play a game while downloading the file
» Higher CPU utilization than if just downloading

20



Protection

Transitions between contexts

Complexity arises with cost of switching:

Example: Say disk 1,000 times slower than memory:
» 1 GiB memory in machine
» 2 Processes want to run, each use 1 GiB
» Can switch processes by swapping them out to disk

» Faster to run one at a time than keep context
switching

21



Processes, Threads, Procedures

22



Programs

A program is (among other things) a sequence of
instructions.

» All programs need to have at least one entry point

23



Programs

Operating systems* model and orchestrate program
execution via certain entities:

» Process
» Thread

» Procedure

“and /or threading libraries, compilers and interpreters/virtual machines

24



Processes

A process is an instance of a program running.

» It's a specific way of calling the main () function.

» Examples (can all run simultaneously):

» gcc file_A.c — compiler running on file A
» gcc file_B.c — compiler running on file B
» emacs — text editor

» firefox — web browser



Better Resource Utilization

Multiple processes can increase CPU utilization
» Overlap one process’'s computation with another’s wait

emacs ——>wait for input——wait for input——

gcc

26



Better Resource Utilization

Multiple processes can reduce latency
» Running A then B requires 100 sec for B to complete

80s
A » B
» Running A and B concurrently makes B finish faster
A
B

» A is slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

27



Processes in the real world |

Processes and parallelism have been a fact of life much

longer than OSes have been around
» E.g., say it takes 1 worker 10 months to make 1 widget
» Company may hire 100 workers to make 100 widgets
» Latency for first widget >> 1/10 month

» Throughput may be < 10 widgets per month
(if can't perfectly parallelize task)

» Or 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

28



Processes in the real world Il

You will see these effects in your Pintos project group
» May block waiting for partner to complete task
» Takes time to coordinate/explain/understand one another's
code
» Labs will take > 1/2 time with two people
» But you will graduate faster than if you took only 1 class at a
time

29



A process’s view of the world
Each process has own view of machine .

» |ts own address space — *(char *)0xc000
different in P; & Ps

» Its own open files

» Its own virtual CPU (through preemptive
multitasking)
Simplifies programming model

» gcc does not care that firefox is running ’

stack

heap

data

text

30



A process’s view of the world

Sometimes want interaction between processes
» Simplest is through files: emacs edits file,
gcc compiles it
» More complicated: Shell/command,
Window manager/app.

max

stack

heap

data

text

31



Inter-Process Communication

How can processes interact

in real time?

(a) By passing messages
through the kernel

(b) By sharing a region of
physical memory

(c) Through
asynchronous signals
or alerts

process A

process B

kernel

process A

shared

process B

Lt

kernel

32



Process Management

Creating processes

int fork(void);
» Create new process that is exact copy of current one

» Returns process ID of new process in “parent”
» Returns 0 in “child”

33



Process Management

Deleting processes

int waitpid(int pid, int *stat, int opt);
» pid — process to wait for, or -1 for any
» stat — will contain exit value, or signal
» opt — usually 0 or WNOHANG

» Returns process ID or -1 on error

34



Process Management

Deleting processes

void exit(int status);
» Current process ceases to exist
» status shows up in waitpid

» By convention, status of 0 is success, non-zero error

35



Process Management

Deleting processes

int kill (int pid, int sig);
» Sends signal sig to process pid

» SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

» SIGKILL stronger, kills process always

36



Process Management

Running programs
int execve (char *prog, char **argv, char **envp);

» prog — full pathname of program to run
» argv — argument vector that gets passed to main
» envp — environment variables, e.g., PATH, HOME
Generally called through a wrapper functions
» int execvp (char *prog, char **argv);
Search PATH for prog, use current environment
» int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL
Example: minish.c
» Loop that reads a command, then executes it

37



minish.c (simplified)
pid_t pid; char x*x*av;
void doexec () {
execvp (av[0], av);
perror (av[0]);

exit (1);
}
/* ... main loop: */
for (;;) {

parse_next_line_of input (&av, stdin);
switch (pid = fork () {
case -1:
perror ("fork"); break;
case O:
doexec ();
default:
waitpid (pid, NULL, 0); break;

38



Manipulating file descriptors |

int dup2 (int oldfd, int newfd);
» Closes newfd, if it was a valid descriptor
» Makes newfd an exact copy of oldfd

» Two file descriptors will share same offset
(Lseek on one will affect both)

39



Manipulating file descriptors ||

int fcntl (int fd, int cmd, ...): Misc fd config

» fcntl (fd, F_SETFD, val) sets close-on-exec flag.
» When val# 0, £d is not inherited by spawned programs

» fcntl (fd, F_GETFL) — get misc fd flags
» fcntl (fd, F_SETFL, val) — set misc fd flags

40



Manipulating file descriptors 11l

Example: redirsh.c
» Loop that reads a command and executes it

» Recognizes command < input > output 2> errlog

41



redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, 0_RDONLY)) < 0) {
perror (infile);
exit (1);
+
if (fd '= 0) {
dup2 (fd, 0);
close (fd);
+
}
/* ... do same for outfile—fd 1, errfile—fd 2 ... */
execvp (av[0], av);
perror (av[0]);
exit (1);

42



Pipes |

int pipe (int fds[2]);
» Returns two file descriptors in fds[0] and fds[1]
» Data written to fds[1] will be returned by read on fds[0]
» When last copy of fds[1] closed, £ds[0] will return EOF

» Returns 0 on success, -1 on error

43



Pipes Il

Operations on pipes
» read/write/close — as with files
» When fds[1] closed, read (fds[0]) returns O bytes

» When fds[0] closed, write(fds[1]):

» Kills process with SIGPIPE
» Or if signal ignored, fails with EPIPE

Example: pipesh.c

» Sets up pipeline command1l | command2 | command3 ...

44



pipesh.c (simplified)
void doexec(void) {
while (outcmd) {
int pipefds[2]; pipe(pipefds);
switch (fork()) {
case -1:
perror("fork"); exit(1);
case O:
dup2(pipefds[1], 1);
close(pipefds[0]); close(pipefds[1]);
outcmd = NULL;
break;
default:
dup2(pipefds[0], 0);
close(pipefds[0]); close(pipefds[1]);
parse_command line(&av, &outcmd, outcmd);
+
+

45



Multiple file descriptors |

» What if you have multiple pipes to multiple processes?

» polle system call lets you know which fd you can
read /write®

typedef struct pollfd {

int fd;

short events; // OR of POLLIN, POLLOUT, POLLERR,

short revents; // ready events returned by kernel
I
int poll(struct pollfd *pfds, int nfds, int timeout);

46


https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/poll.h.html

Multiple file descriptors |I

» Also put pipes/sockets into non-blocking mode

if ((n = fentl (s.fd_, F_GETFL)) == -1
|| fentl (s.fd_, F_SETFL, n | O_NONBLOCK) == -1)
perror ("0_NONBLOCK") ;

» Returns errno EGAIN instead of waiting for data
» Does not work for normal files (see aiow for that)

®In practice, more efficient to use epolle on linux or kqueue= on ¥*BSD

47


https://pubs.opengroup.org/onlinepubs/009695399/basedefs/aio.h.html
http://man7.org/linux/man-pages/man7/epoll.7.html
https://man.openbsd.org/kqueue.2

More on Fork

» Most calls to fork followed by execve

» Could also combine into one spawn system call
(like Pintos exec)

» Occasionally useful to fork one process
» Unix dump utility backs up file system to tape
» If tape fills up, must restart at some logical point
» Implemented by forking to revert to old state if tape ends

» Real win is simplicity of interface

» Tons of things you might want to do to child: Manipulate file
descriptors, alter namespace, manipulate process limits ..
» Yet fork requires no arguments at all

48



Examples

» login — checks username/password, runs user shell

» Runs with administrative privileges

» Lowers privileges to user before exec'ing shell

» Note doesn’'t need fork to run shell, just execve
» chroot = — change root directory

» Useful for setting/debugging different OS image in a subdirectory
» Some more linux-specific examples

» systemd-nspawne — runs program in container-like environment
» ip netnse — runs program with different network namespace
» unsharez — decouple namespaces from parent and exec program

49


http://man7.org/linux/man-pages/man1/chroot.1.html
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man1/unshare.1.html

Spawning a process without fork |

Example: Windows

» CreateProcess system call

» Also CreateProcessAsUserw, CreateProcessWithLogonWe,
CreateProcessWithTokenWa, ..

50


http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

Spawning a process without fork Il

BOOL WINAPI CreateProcess(

)

_In_opt_
_Inout_opt_
_In_opt_
_In_opt_
_In_

_In_

_In _opt_
_In_opt_
_In_

_Out_

LPCTSTR 1lpApplicationName,

LPTSTR 1lpCommandLine,
LPSECURITY_ATTRIBUTES 1lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCTSTR 1pCurrentDirectory,

LPSTARTUPINFO 1lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

51



Implementing processes |

Process Control Block (PCB):
» Holds all the data for each process

» Called proc in Unix, task_struct in Linux,

and just struct thread in Pintos

» Tracks state of the process
» Running, ready (runnable), waiting, etc.

Process state

Process ID

User id, etc.

Program counter

Registers

Address space

(VM data structs)

Open files

PCB

52



Implementing processes |I

» Includes information necessary to
run:
» Registers, virtual memory mappings, etc.
» Open files (including memory mapped files)

» Various other data about the
process:

» Credentials (user/group ID), signal mask,
controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, ..

Process state

Process ID

User id, etc.

Program counter

Registers

Address space

(VM data structs)

Open files

PCB

53



Process states |

»w*ted

1/O or event
completion

scheduler
dispatch

interrupt

1/0 or event wait

54



Process states ||

Process can be in one of several states:
» new & terminated at beginning & end of life

» running — currently executing (or will execute on
kernel return)

» ready — can run, but kernel has chosen different
process to run

» waiting — needs async event (e.g., disk operation) to
proceed

55



Process states Il

Which process should the kernel run?
» if O processes are runnable, run idle loop (or halt CPU)
» if 1 process is runnable, run it

» if >1 runnable, must make scheduling decision

56



Scheduling

How to pick which process to run?
» Scan process table for first runnable?

» Expensive. Weird priorities (small pids do better)
» Divide into runnable and blocked processes

» FIFO?
» Put threads on back of list, pull them from front:

head ¢— 1 ¢« b > 3 «— I,
tail ¢ t

» Pintos does this—see ready_list in thread.c
» Priority?
> Give some threads a better shot at the CPU

57



Scheduling policy |

Want to balance multiple goals:
» Fairness — don't starve processes
» Priority — reflect relative importance of procs
» Deadlines — must do X (play audio) by certain time
» Throughput — want good overall performance

» Efficiency — minimize overhead of scheduler itself

58



Scheduling policy Il

No universal policy
» Many variables, can't optimize for all

» Conflicting goals (e.g., throughput or priority vs.
fairness)

59



Preemption

Kernel needs to gets control:
» Running process can vector control to kernel (voluntary)
» System call, page fault, illegal instruction, etc.
» May put current process to sleep—e.g., read from disk
» May make other process runnable—e.g., fork, write to pipe
» Periodic timer interrupt (involuntary)
» If running process used up quantum, schedule another
» Device interrupt (involuntary)

» Disk request completed, or packet arrived on network
» Previously waiting process becomes runnable
» Schedule if higher priority than current running proc.

60



Preemption

Changing the running process is called
a context switch

61



Context Switch

process P, operating system process P,

interrupt or system call
executing J_L

h | save state into PCB, |

° idle

| reload state from PCB; |

ridle interrupt or system call executing

[ T~y

| save state into PCB; |

. idle

|reload state from PCBO|

executing U\—I

62



Context Switch |

Typical operations include:
» Save program counter and integer registers (always)
» Save floating point or other special registers
» Save condition codes

» Change virtual address translations

63



Context Switch Il

Context switches incur a non-negligible cost:

» Saving/restoring FP registers is expensive
» Optimization: only save when used

» May require flushing the Translation Lookaside Buffer
(TLB)

» HW Optimization 1: don't flush kernel's own data from TLB
» HW Optimization 2: use tag to avoid flushing any data

» Usually causes more cache misses (switch working
sets)

64



Threads

| code H data H files ‘ code H data || files ‘
‘ stack ‘registers"registers”registers‘
’ stack H stack || stack ‘

<«

thread —> ;

r— thread

single-threaded process

multithreaded process

65



Threads

A thread is a schedulable execution context:

» Another way of calling a procedure
(not necessarily main() this time)

» Program counter, stack, registers, ...

» Shares code, data, files etc with the parent process

66



Why threads?

Lighter-weight and more popular abstraction for concurrency:

» Allows one process to use multiple CPUs or cores
» Allows program to overlap 1/0O and computation
» E.g., threaded web server services clients simultaneously:
for (;;) {
c = accept_client();
thread create(service client, c);

}

» Most kernels have threads, too

» Typically at least one kernel thread for every process
» Switch kernel threads when preempting process

67



Thread package API

tid thread_create (void (*fn) (void *), void *arg);
» Create a new thread, run fn with arg

void thread exit ();
» Destroy current thread

void thread_join (tid thread);
» Wait for thread thread to exit

68



Thread package API

Can have kernel-level or user-level threads
» Kernel-level causes more race conditions

» User-level can't take advantage of multiple cores

69



Kernel-level threads

ENN
o0 e

<«—— user thread

<«——Kernel thread

70



Kernel-level threads

thread create can be implemented as a system call:
» |t's same as process creation minus some features:

» Keep same address space, file table, etc., in new process
» rfork/clone syscalls actually allow individual control

» Faster than process creation, but still very heavy weight

71



Limitations of kernel-level threads

» Every thread operation must go through kernel
P create, exit, join, synchronize, or switch for any reason
» A syscall can take 100 cycles, wheres a fn call can take 5 cycles
» Result: threads 10x-30x slower when implemented in kernel
» One-size fits all thread implementation
» Kernel threads must please all people
» Maybe pay for fancy features (priority, etc.) you don't need
» General heavy-weight memory requirements

» E.g., requires a fixed-size stack within kernel
» Other data structures designed for heavier-weight processes

72



User-level threads

S

<«— kernel thread

Implement as user-level library (a.k.a.
green threads)

» One kernel thread per process

» thread create, thread exit,
etc., are just library functions

73



User-level threads: Implementation |

» Allocate a new stack for each thread create

» Keep a queue of runnable threads
» Replace blocking system calls (read/write/etc.)

» If operation would block, switch and run different thread

» Schedule periodic timer signal (setitimer)
» Switch to another thread on timer signals (if preemption is desired)

74



User-level threads: Implementation ||

Multi-threaded web server example:

» Thread calls read to get data from remote web
browser

» “Fake” read function makes read syscall in
non-blocking mode

» No data? schedule another thread

» On timer or when idle check which connections have
new data

75



Background: procedure calls

Procedure call
—save active caller registers

—push arguments to stack

—call foo (pushes pc)
\ —save needed callee registers

—...do stuff...
—restore callee saved registers

—jump back to calling function
—rrestore stack+-caller regs. /

76



Background: procedure calls

Caller must save some state across function call
» Return address, caller-saved registers
Other state does not need to be saved

» Callee-saved regs, global variables, stack pointer

77



Threads vs. procedures

» Threads may resume out of order:

» Cannot use LIFO stack to save state
» General solution: one stack per thread

» Threads switch less often than procedures:
» Don't partition registers (why?)

» Threads can be involuntarily interrupted:
» Synchronous: procedure call can use compiler to save state
» Asynchronous: thread switch code saves all registers

» More than one than one thread can run at a time:

» Procedure call scheduling obvious: Run called procedure
» Thread scheduling: What to run next and on which CPU?

78



Pintos thread implementation

Pintos implements user processes on top of its own threads:
» Code for threads in kernel very similar to green threads
Per-thread state in thread control block structure:
struct thread {

uint8_t xstack; /* Saved stack pointer. */

s
uint32_t thread_stack ofs = offsetof(struct thread, stack);

79



Pintos thread implementation

C declaration for asm thread-switch function:

» struct thread *switch threads(
struct thread *cur,
struct thread *next

);
Also thread initialization function to create new stack:

» void thread create(const char *name,
thread func *function, void *aux);

80



1386 switch_threads

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

mov thread stack_ofs, ’%edx
movl 20(%esp), %eax
movl %esp, (%eax,’%edx,1)

movl 24(%esp), %hecx
movl (%ecx,’%edx,1), %esp

popl ’%edi; popl Jesi
popl ’%ebp; popl ’%ebx

ret

Save callee-saved regs

Y%edx

offset of stack field
in thread struct

heax = cur
cur->stack = Jesp

hecx = next
hesp = next->stack

Restore callee-saved regs

Resume execution

81



i386 switch_threads  curen

next

stack stack
next next
current current

return addr

return addr

hesp

%ebx

hebp

%esi

%edi

This is actual code from Pintos switch.S (slightly reformatted)

» See Thread Switchingz in documentation

81


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads  curee next
next next
current current

return addr

return addr

%hebx hebx
hebp Jhebp
hesi hesi
hedi hedi

hesp

This is actual code from Pintos switch.S (slightly reformatted)

» See Thread Switchingz in documentation

81


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads  curee next
next next
current current

return addr

return addr

%hebx hebx
hebp Jhebp
hesi hesi
hedi hedi

This is actual code from Pintos switch.S (slightly reformatted)

» See Thread Switchingz in documentation

hesp

81


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC99

i386 switch_threads  curee next
next next
current current

return addr

return addr

%ebx

hebp

%esi

%edi

callee-saved
registers
restored

This is actual code from Pintos switch.S (slightly reformatted)

» See Thread Switchingz in documentation

hesp

81


https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC99

Limitations of user-level threads

A user-level thread can do the same operations as the
kernel-level thread. But:

» Can't take advantage of multiple CPUs or cores
» A blocking system call blocks all user-level threads
» A page fault blocks all threads

» Possible deadlock if one thread blocks on another

82



Limitations of user-level threads

A user-level thread can do the same operations as the
kernel-level thread. But:

» Can't take advantage of multiple CPUs or cores

» A blocking system call blocks all user-level threads

» Can use 0_NONBLOCK to avoid blocking on network connections
» But doesn't work for disk (e.g., even aio doesn't work for metadata)
» So one uncached disk read/synchronous write blocks all threads

» A page fault blocks all threads

» Possible deadlock if one thread blocks on another

82



Limitations of user-level threads

A user-level thread can do the same operations as the
kernel-level thread. But:

» Can't take advantage of multiple CPUs or cores
» A blocking system call blocks all user-level threads

» A page fault blocks all threads

» Possible deadlock if one thread blocks on another
» May block entire process and make no progress

82



Limitations of user-level threads

Nonblocking vs Asynchronous

» Blocking read system call: Blocks until *some* data is
available: int read(fd, voidx, size);

» Nonblocking read system call: If no data is available
returns 0 immediately: int read(fd, void*, size);

» Asynchronous read system call: Returns immediately,
invokes callback when data is available

int reada(fd, int(*) (const void *, size));6

SNOT a real system callll

83



User threads on kernel threads

User threads implemented on kernel
threads

» Multiple kernel-level threads per

process ; ;4— user thread

» thread create, thread exit
still library functions as before

Sometimes called n : m threading

» Have n user threads per m
kernel threads
(Simple user-level threads are
n: 1, kernel threads 1 : 1)

<«—kernel thread

84



Limitations of n: m threading

» Blocked threads, deadlock, ..
» Hard to keep same # kthreads as available CPUs

» Kernel knows how many CPUs available

» Kernel knows which kernel-level threads are blocked

» But tries to hide these things from applications for transparency

» So user-level thread scheduler might think a thread is running while
underlying kernel thread is blocked

» Kernel doesn't know relative importance of threads
» Might preempt kthread in which library holds important lock

85



Lessons

» Threads best implemented as a library
» But kernel threads not best interface on which to do this
» Better kernel interfaces have been suggested

» See Scheduler Activations [Anderson et al.]&
» Maybe too complex to implement on existing OSes (some have added
then removed such features)

» Standard threads still fine for most purposes

» Use kernel threads if 1/O concurrency main goal
» Use n: m threads for highly concurrent (e.g,. scientific applications)
with many thread switches

» But concurrency greatly increases complexity
» More on that in concurrency, synchronization lectures...

86


http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

	Protection
	(UNIX-centric) User view of processes
	Process Management
	Kernel view of processes
	Threads
	Thread implementation details

