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Goal I

We want humans to produce
concurrent and correct software
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Goal II

Humans use programming languages
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Goal III

Programming languages define or assume memory
models
I They are defined in terms of synchronization

primitives
ISAs define instructions with consistency
characteristics.
I CPUs implement them
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Goal IV

I As usual, operating systems bridge the gap by
implementing well-defined abstractions using
facilities exposed by the CPU.

I Programming languages in turn implement their own
synchronization primitives in terms of primitives
exposed by the operating system.
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Goal V

These boundaries between these systems are blurred, since
they all evolved together instead of being designed one fell
swoop.
I Yet the distinction is still there.

Goal in this lecture:
I Dissecting synchronization primitives that are popular

among userspace apps
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Review: Thread package API
I tid thread_create (void (*fn) (void *), void *arg);

I Create a new thread that calls fn with arg

I void thread_exit ();
I void thread_join (tid thread);
I The execution of multiple threads is interleaved
I Can have non-preemptive threads:

I One thread executes exclusively until it makes a blocking call
I Or preemptive threads (what we usually mean in this class):

I May switch to another thread between any two instructions.
I Using multiple CPUs is inherently preemptive

I Even if you don’t take CPU0 away from thread T , another thread on
CPU1 can execute “between” any two instructions of T
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Program A
int flag1 = 0, flag2 = 0;

void p1(void *ignored) {
flag1 = 1;
if (!flag2) { critical_section_1 (); }

}
void p2(void *ignored) {
flag2 = 1;
if (!flag1) { critical_section_2 (); }

}
int main() {
tid id = thread_create(p1, NULL);
p2();
thread_join(id);

}

Q: Can both critical sections run?
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Program B
int data = 0, ready = 0;

void p1(void *ignored) {
data = 2000;
ready = 1;

}

void p2(void *ignored) {
while (!ready)
;

use(data);
}

int main() { ... }

Q: Can use be called with 0?
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Program C
int a = 0; int b = 0;

void p1(void *ignored) {
a = 1;

}

void p2(void *ignored) {
if (a == 1) b = 1;

}

void p3(void *ignored) {
if (b == 1) use(a);

}

Q: If p1–3 run concurrently, can use be called with 0?
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Correct answers

I Program A: We can’t know
I Program B: We can’t know
I Program C: We can’t know
I Why can’t we know?

I It depends on what machine you use
I If a system provides sequential consistency, then all answers are No
I But not all hardware provides sequential consistency
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Sequential Consistency (SC)
Definition
Sequential consistency: The result of execution is as if all
operations were executed in some sequential order, and the
operations of each processor occurred in the order specified by the
program. – (Lamport)
I Boils down to two requirements on loads and stores:

1. Maintaining program order of each individual processor
2. Ensuring write atomicity

I Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads

I Result may not correspond to any instruction interleaving on 1 CPU
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SC prevents hardware optimizations I
Complicates write buffers
I E.g., read flagn before flag(3− n) written through in

Program A
Can’t re-order overlapping write operations
I Concurrent writes to different memory modules
I Coalescing writes to same cache line

Complicates non-blocking reads
I E.g., speculatively prefetch data in Program B
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SC prevents hardware optimizations II

Makes cache coherence more expensive
I Must delay write completion until invalidation/update

(Program B)
I Can’t allow overlapping updates if no globally visible

order (Program C)
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SC prevents compiler optimizations

I Code motion
I Caching value in register

I Collapse multiple loads/stores of same address into one operation
I Common subexpression elimination

I Could cause memory location to be read fewer times
I Loop blocking

I Re-arrange loops for better cache performance
I Software pipelining

I Move instructions across iterations of a loop to overlap instruction
latency with branch cost
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Caching Terminology I

Data is transferred between memory and cache in blocks
of fixed size, called cache lines.
I When a cache line is copied from memory into the

cache, a cache entry is created.
I The cache entry will include the copied data as well as

the requested memory location.
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Caching Terminology II

When the processor needs to read or write a location in
memory, it first checks for a corresponding entry in the
cache.
I If the processor finds that the memory location is in

the cache, a cache hit has occurred.
I However, if the processor does not find the memory

location in the cache, a cache miss has occurred.
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x86 consistency [intel 3a �, §8.2] I
x86 supports multiple consistency/caching models
I Memory Type Range Registers (MTRR) specify consistency for

ranges of physical memory (e.g., frame buffer)
I Page Attribute Table (PAT) allows control for each 4K page

Choices include:
I WB: Write-back caching (the default)
I WT: Write-through caching (all writes go to memory)
I UC: Uncacheable (for device memory)
I WC: Write-combining – weak consistency & no caching

(used for frame buffers, when sending a lot of data to GPU)

19

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf


x86 consistency [intel 3a �, §8.2] II

Some instructions have weaker consistency
I String instructions (written cache-lines can be

re-ordered)
I Special “non-temporal” store instructions (movnt∗)

that bypass cache and can be re-ordered with respect
to other writes
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x86 WB consistency

Old x86s (e.g, 486, Pentium 1) had almost SC
I Exception: A read could finish before an earlier write

to a different location
I Which of Programs A, B, C might be affected?
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Old x86s (e.g, 486, Pentium 1) had almost SC
I Exception: A read could finish before an earlier write

to a different location
I Which of Programs A, B, C might be affected?

Just A
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x86 WB consistency

Reminder:
I Program A: flag1 = 1; if (!flag2)

critical_section_1();
I Program B: while (!ready); use(data);
I Program C: P2 if (a == 1) b = 1; and P3 if

(b == 1) use(a);
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x86 WB consistency
Newer x86s also let a CPU read its own writes early

volatile int flag1; volatile int flag2;

int p1 (void) int p2 (void)
{ {
register int f, g; register int f, g;
flag1 = 1; flag2 = 1;
f = flag1; f = flag2;
g = flag2; g = flag1;
return 2*f + g; return 2*f + g;

} }

I E.g., both p1 and p2 can return 2:
I Older CPUs would wait at “f = …” until store complete
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x86 atomicity I
lock prefix makes a memory instruction atomic
I Historically locked bus for duration of instruction

(expensive!)
I Now requires exclusively caching memory,

synchronizing with other memory operations
I All lock instructions totally ordered
I Other memory instructions cannot be re-ordered with

locked ones
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x86 atomicity II

I xchg instruction is always locked (even without prefix)
I Special barrier (or “fence”) instructions can prevent

re-ordering
I lfence – can’t be reordered with reads (or later writes)
I sfence – can’t be reordered with writes

(e.g., use after non-temporal stores, before setting a ready flag)
I mfence – can’t be reordered with reads or writes
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A critical section is a protected code fragment
that cannot be executed by

more than one thread of execution at a time.
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Assuming sequential consistency I

Reasoning about concurrent code assuming SC:
I For low-level code, either know your memory model or

program for worst-case relaxed consistency (∼DEC alpha)
I May need to sprinkle barrier/fence instructions into your source
I Or may need compiler barriers to restrict optimization

I For most code, avoid depending on memory model
I If you obey certain rules (discussed later)

…system behavior should be indistinguishable from SC
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Assuming sequential consistency II

I Let’s for now say we have sequential
consistency

I Example concurrent code: Producer/Consumer
I buffer stores BUFFER_SIZE items
I count is number of used slots
I out is next empty buffer slot to fill (if any)
I in is oldest filled slot to consume (if any)
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void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
while (count == BUFFER_SIZE)

/* do nothing */;
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}
}
void consumer (void *ignored) {

for (;;) {
while (count == 0)

/* do nothing */;
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
consume_item (nextConsumed);

}
}
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Data races I
I count may have wrong value
I Possible implementation of count++ and count--

register←count register←count
register←register + 1 register←register − 1
count←register count←register

I Possible execution (count one less than correct):
register←count
register←register + 1

register←count
register←register − 1

count←register
count←register
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Data races II
I What about a single-instruction add?

I E.g., i386 allows single instruction addl $1,_count
I So implement count++/-- with one instruction
I Now are we safe?

I A single instruction may encode a load and a store operation
I S.C. doesn’t make such read-modify-write instructions atomic
I So on multiprocessor, suffer same race as 3-instruction version

I Can make x86 instruction atomic with lock prefix
I But lock potentially very expensive
I Compiler assumes you don’t want penalty, doesn’t emit it

I Need solution to critical section problem
I Place count++ and count-- in critical section
I Protect critical sections from concurrent execution
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Desired properties of solution
I Mutual Exclusion

I Only one thread can be in critical section at a time
I Progress

I Say no process currently in critical section (C.S.)
I One of the processes trying to enter will eventually get in

I Bounded waiting
I Once a thread T starts trying to enter the critical section, there is a

bound on the number of times other threads get in
I Note progress vs. bounded waiting

I If no thread can enter C.S., don’t have progress
I If thread A waiting to enter C.S. while B repeatedly leaves and

re-enters C.S. ad infinitum, don’t have bounded waiting
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Mutexes
Must adapt to machine memory model if not SC
I If you need machine-specific barriers anyway, might as well

take advantage of other instructions helpful for synchronization
I Want to insulate userspace programmer from implementing

synchronization primitives
I Thread packages typically provide mutexes:

void mutex_init (mutex_t *m, …);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

I Only one thread acquires m at a time, others wait
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Thread API contract I
All global data should be protected by a mutex!
I Global = accessed by more than one thread,

at least one write
I The exception is initialization, before exposed to other threads
I This is the responsibility of the userspace programmer

If you use mutexes properly, behavior should be indistinguishable
from Sequential Consistency
I This is the responsibility of the threads package (& compiler)
I Mutex is broken if you use properly and don’t see SC
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Thread API contract II

OS kernels also need synchronization.
I Some mechanisms look like mutexes
I But interrupts complicate things (incompatible w.

mutexes)
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Same concept, many names I

Most popular application-level thread API: Pthreads �

I Function names in this lecture all based on Pthreads
C11 � uses mtx_ � instead of mutex_, C++11 uses methods on
mutex �

Pintos uses struct lock for mutexes:
void lock_init (struct lock *);
void lock_acquire (struct lock *);
bool lock_try_acquire (struct lock *);
void lock_release (struct lock *);
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Same concept, many names II

Extra Pintos feature:
I Release checks that lock was acquired by same thread
I bool lock_held_by_current_thread (struct lock

*lock);
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Improved producer
mutex_t mutex = MUTEX_INITIALIZER;
void producer (void *ignored) {

for (;;) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
}
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Improved consumer
void consumer (void *ignored) {

for (;;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}
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Condition variables I

Busy-waiting in application is a bad idea:
I Consumes CPU even when a thread can’t make progress
I Unnecessarily slows other threads/processes or wastes power
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Condition variables II
Better to inform scheduler of which threads can run
I Typically done with condition variables
I struct cond_t;

(pthread_cond_t � or condition in Pintos)
I void cond_init (cond_t *, …);
I void cond_wait (cond_t *c, mutex_t *m);

I Atomically unlock m and sleep until c signaled
I Then re-acquire m and resume executing

I void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

I Wake one/all threads waiting on c
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Improved producer
mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}
} 42



Improved consumer
void consumer (void *ignored) {

for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}
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Re-check conditions

I Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);
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Re-check conditions
I Otherwise, breaks with spurious wakeup or two consumers

I Start where Consumer 1 has mutex but buffer empty, then:
Consumer 1 Consumer 2 Producer
cond_wait (…); mutex_lock (…);...

count++;
cond_signal (…);

mutex_lock (…); mutex_unlock (…);
if (count == 0)...
use buffer[out] …
count--;
mutex_unlock (…);

use buffer[out] … ←− No items in buffer
45



Condition variables II

I Why must cond_wait both release mutex & sleep?
I Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
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Condition variables III
Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

I Problem: cond_wait & cond_signal do not commute
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Other thread package features

I Alerts – cause exception in a thread
I Timedwait – timeout on condition variable
I Shared locks – concurrent read accesses to data
I Thread priorities – control scheduling policy

I Mutex attributes allow various forms of priority donation
(will be familiar concept after lab 1)

I Thread-specific global data
I Need for things like errno

I Different synchronization primitives (later in lecture)
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Implementing Synchronization
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Implementing synchronization
I Implement mutex as straight-forward data structure?

typedef struct mutex {
bool is_locked; /* true if locked */
thread_id_t owner; /* thread holding lock, if locked */
thread_list_t waiters; /* threads waiting for lock */

} mutex_t;

I Fine, so long as we avoid data races on the mutex itself
I Need lower-level lock lk for mutual exclusion

I Internally, mutex_* functions bracket code with
lock(&mutex->lk) … unlock(&mutex->lk)

I Otherwise, data races! (E.g., two threads manipulating waiters)
I How to implement lower_level_lock_t?
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Approach #1: Disable interrupts
I Only for apps with n : 1 threads (1 kthread)

I Cannot take advantage of multiprocessors
I But sometimes most efficient solution for uniprocessors

I Typical setup: periodic timer signal caught by thread scheduler
I Have per-thread “do not interrupt” (DNI) bit
I lock (lk): sets thread’s DNI bit
I If timer interrupt arrives

I Check interrupted thread’s DNI bit
I If DNI clear, preempt current thread
I If DNI set, set “interrupted” (I) bit & resume current thread

I unlock (lk): clears DNI bit and checks I bit
I If I bit is set, immediately yields the CPU

51



Approach #2: Spinlocks
I Most CPUs support atomic read-[modify-]write
I Example: int test_and_set (int *lockp);

I Atomically sets *lockp = 1 and returns old value
I Special instruction – no way to implement in portable C99

(C11 � supports with explicit atomic_flag_tet_and_set � function)
I Use this instruction to implement spinlocks:

#define lock(lockp) while (test_and_set (lockp))
#define trylock(lockp) (test_and_set (lockp) == 0)
#define unlock(lockp) *lockp = 0

I Spinlocks implement mutex’s lower_level_lock_t
I Can you use spinlocks instead of mutexes?

I Wastes CPU, especially if thread holding lock not running
I Mutex functions have short C.S., less likely to be preempted
I On multiprocessor, sometimes good to spin for a bit, then yield
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Synchronization on x86
I Test-and-set only one possible atomic instruction
I x86 xchg instruction, exchanges reg with mem

I Can use to implement test-and-set
_test_and_set:

movl 4(%esp), %edx # %edx = lockp
movl $1, %eax # %eax = 1
xchgl %eax, (%edx) # swap (%eax, *lockp)
ret

I CPU locks memory system around read and write
I Recall xchgl always acts like it has implicit lock prefix
I Prevents other uses of the bus (e.g., DMA)

I Usually runs at memory bus speed, not CPU speed
I Much slower than cached read/buffered write
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Kernel Synchronization
Should kernel use locks or disable interrupts?
I Old UNIX had 1 CPU, non-preemptive threads, no mutexes

I Interface designed for single CPU, so count++ etc. not data race
I …Unless memory shared with an interrupt handler

int x = splhigh (); /* Disable interrupts */
/* touch data shared with interrupt handler ... */
splx (x); /* Restore previous state */

I C.f., intr_disable / intr_set_level in Pintos, and
preempt_disable / preempt_enable � in linux

I Used arbitrary pointers like condition variables
I int [t]sleep (void *ident, int priority, ...);

put thread to sleep; will wake up at priority (∼cond_wait)
I int wakeup (void *ident);

wake up all threads sleeping on ident (∼cond_broadcast)
54
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Kernel locks
I Nowadays, should design for multiprocessors

I Even if first version of OS is for uniprocessor
I Someday may want multiple CPUs and need preemptive threads
I That’s why Pintos uses sleeping locks

(sleeping locks means mutexes, as opposed to spinlocks)
I Multiprocessor performance needs fine-grained locks

I Want to be able to call into the kernel on multiple CPUs
I If kernel has locks, should it ever disable interrupts?

I Yes! Can’t sleep in interrupt handler, so can’t wait for lock
I So even modern OSes have support for disabling interrupts
I Often uses DNI trick when cheaper than masking interrupts in

hardware
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Semaphores [Dijkstra] �

I A Semaphore is initialized with an integer N
I Provides two functions:

I sem_wait (S) (originally called P , called sema_down in Pintos)
I sem_signal (S) (originally called V , called sema_up in Pintos)

I Guarantees sem_wait will return only N more times than
sem_signal called

I Example: If N == 1, then semaphore acts as a mutex with
sem_wait as lock and sem_signal as unlock

I Semaphores give elegant solutions to some problems
I Unlike condition variables, wait & signal commute

I Linux primarily uses semaphores for sleeping locks
I sema_init, down_interruptible, up, …
I Also weird reader-writer semaphores, rw_semaphore [Love] �
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Semaphore producer/consumer

I Initialize full to 0 (block consumer when buffer
empty)

I Initialize empty to N (block producer when queue full)
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void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

}
}
void consumer (void *ignored) {

for (;;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);

}
}
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Various synchronization mechanisms
I Other more esoteric primitives you might encounter

I Plan 9 used a rendezvous � mechanism
I Haskell uses MVars (like channels of depth 1)

I Many synchronization mechanisms equally expressive
I Pintos implements locks, condition vars using semaphores
I Could have been vice versa
I Can even implement condition variables in terms of mutexes

I Why base everything around semaphore implementation?
I High-level answer: no particularly good reason
I If you want only one mechanism, can’t be condition variables

(interface fundamentally requires mutexes)
I Because sem_wait and sem_signal commute, eliminates problem of

condition variables w/o mutexes
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