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Want processes to co-exist

OS
0x9000

0x7000
gcc

0x4000
bochs/pintos

0x3000
emacs

0x0000

Consider multiprogramming on physical
memory
I What happens if pintos needs to

expand?
I If emacs needs more memory than is

on the machine?
I If pintos has an error and writes to

address 0x7100?
I When does gcc have to know it will

run at 0x4000?
I What if emacs isn’t using its memory?
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Issues in sharing physical memory
I Protection

I A bug in one process can corrupt memory in another
I Must somehow prevent process A from trashing B’s memory
I Also prevent A from even observing B’s memory (ssh-agent)

I Transparency
I A process shouldn’t require particular physical memory bits
I Yet processes often require large amounts of contiguous memory (for

stack, large data structures, etc.)
I Resource exhaustion

I Programmers typically assume machine has “enough” memory
I Sum of sizes of all processes often greater than physical memory
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Virtual Memory

Chapter I
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Virtual Memory Goals

...
load...

kernel

MMU memory

Is address
legal?

virtual address
0x30408

Yes: phys.
addr 0x92408

No: to fault handler

I Give each program its own virtual address space
I At runtime, Memory-Management Unit relocates each load/store
I Application doesn’t see physical memory addresses

I Also enforce protection
I Prevent one app from messing with another’s memory

I And allow programs to see more memory than exists
I Somehow relocate some memory accesses to disk
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Virtual memory advantages

Can re-locate program while running
I Run partially in memory, partially on disk
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Virtual memory advantages
Most of a process’s memory may be idle (80/20 rule).

kernel

idle

gcc

kernel

idle

emacs

physical
memory

I Write idle parts to disk until needed
I Let other processes use memory of idle part
I Like CPU virtualization: when process not using CPU, switch

(Not using a memory region? give it to another process)
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Virtual memory advantages
Most of a process’s memory may be idle (80/20 rule).

kernel

idle

gcc

kernel

idle

emacs

physical
memory

Challenge: VM = extra layer, could be slow
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Idea 1: no hardware, load-time linking

...
call 0x2200...

static a.out ...
call 0x5200...

kernel

0x3000

0x1000

0x6000

0x4000

Linker patches addresses of symbols like printf
I Idea: link when process executed, not at compile time

I Already have PIE (position-independent executable) for security
I Determine where process will reside in memory at launch
I Adjust all references within program (using addition)

Problems?
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Idea 1: no hardware, load-time linking

...
call 0x2200...

static a.out ...
call 0x5200...

kernel

0x3000

0x1000

0x6000

0x4000

Problems:
I How to enforce protection?
I How to move once already in memory?

(consider data pointers)
I What if no contiguous free region fits program?
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Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

I Two special privileged registers: base and bound
I On each load/store/jump:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound,

else trap to kernel
Problems?
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Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: How to move process in memory?
I Change base register

10



Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: What happens on context switch?
I Kernel must re-load base and bound registers
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Idea 2: base + bound register

...
call 0x2200...

static a.out ...
call 0x2200...

kernel

0x3000

0x1000

0x6000

0x4000

Problem: How to move/grow process?
I There is no easy way ¯\_(ツ)_/¯
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Virtual Memory Definitions
I Programs load/store to virtual addresses
I Actual memory uses physical addresses
I VirtMem Hardware is Memory Management Unit (MMU)

CPU MMU memory
virtual

addresses
physical

addresses

I Usually part of CPU core (one address space per hyperthread)
I Configured through privileged instructions (e.g., load bound reg)
I Translates from virtual to physical addresses
I Gives per-process view of memory called address space
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VirtMem trade-offs vs Base+bound

Advantages:
I Cheap in terms of hardware: only two registers
I Cheap in terms of cycles: do add and compare in parallel

12



VirtMem trade-offs vs Base+bound

Disadvantages:
I Growing a process is expensive or

impossible
I No way to share code or data (E.g., two

copies of bochs, both running pintos)
One solution: Multiple segments
I E.g., separate code, stack, data segments
I Possibly multiple data segments

free space

pintos2

gcc

pintos1

12



Segmentation

text r/o

gcc

data

stack

physical
memory

I Let processes have many base/bound regs
I Address space built from many segments
I Can share/protect memory at segment granularity

Must specify segment as part of virtual address
13



Segmentation mechanics

I Each process has a segment table
I Each VA indicates a segment and offset:

I Top bits of addr select segment, low bits select offset (PDP-10)
I Or segment selected by instruction or operand

(means you need wider “far” pointers to specify segment)
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Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000

0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

I 2-bit segment number (1st digit), 12 bit offset (last 3)
I Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?
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Segmentation trade-offs

Advantages
I Multiple segments per

process
I Allows sharing! (how?)
I Don’t need entire process

in memory

16



Segmentation trade-offs
Disadvantages:
I Requires translation hardware, which could limit

performance
I Segments not completely transparent to program (e.g.,

default segment faster or uses shorter instruction)
I n byte segment needs n contiguous bytes of physical

memory
I Makes fragmentation a real problem.
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Fragmentation
Fragmentation =⇒ Inability to use free memory. Over time:
I Variable-sized pieces = many small holes (external

fragmentation)
I Fixed-sized pieces = no external holes, but force internal waste

(internal fragmentation)
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Alternatives to hardware MMU

Language-level protection (JavaScript)
I Single address space for different modules
I Language enforces isolation
I Singularity OS does this with C# [Hunt] �
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Alternatives to hardware MMU
Software fault isolation
I Instrument compiler output
I Checks before every store operation prevents modules

from trashing each other
I Google’s now deprecated Native Client � does this for

x86 [Yee] �

I Easier to do for virtual architecture, e.g., Wasm �

I Works really well on ARM64 [Yedidia’24] �
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https://developer.chrome.com/native-client
http://research.google.com/pubs/archive/34913.pdf
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Paging
I Divide memory up into small, equal-size pages
I Map virtual pages to physical pages

I Each process has separate mapping
I Allow OS to gain control on certain operations

I Read-only pages trap to OS on write
I Invalid pages trap to OS on read or write
I OS can change mapping and resume application

I Other features sometimes found:
I Hardware can set “accessed” and “dirty” bits
I Control page execute permission (+x) separately from read/write

(+rw)
I Control caching or memory consistency of page
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Paging trade-offs

I Eliminates external fragmentation
I Simplifies allocation, free, and backing storage (swap)
I Average internal fragmentation of .5 pages per “segment”
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Simplified allocation
gcc emacs

Disk

physical
memory

I Allocate any physical page to any process
I Can store idle virtual pages on disk
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Paging data structures

Pages are fixed size, e.g., 4 KiB
I Least significant 12 (log2 4 Ki) bits of address are page offset
I Most significant bits are page number
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Paging data structures

Each process has a page table
I Maps virtual page numbers (VPNs) to physical page numbers

(PPNs)
I Also includes bits for protection, validity, etc.
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Paging data structures

On memory access:
I Translate VPN to PPN, then add offset
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Example: Paging on PDP-11

64 KiB virtual memory, 8 KiB pages
I Separate address space for instructions & data
I I.e., can’t read your own instructions with a load

Entire page table stored in registers
I 8 Instruction page translation registers
I 8 Data page translations

Swap 16 machine registers on each context switch
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x86 Paging
Paging enabled by bits in a control register (%cr0)
I Only privileged OS code can manipulate control registers

Normally 4 KiB pages:
I %cr3: points to physical address of 4 KiB page directory

I See pagedir_activate � in Pintos
I Page directory: 1024 PDEs (page directory entries)

I Each contains physical address of a page table
I Page table: 1024 PTEs (page table entries)

I Each contains physical address of virtual 4K page
I Page table covers 4 MiB of Virtual mem
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x86 Paging

See old intel manual � for simplest explanation:
I Also volume 2 of AMD64 Architecture docs �

I Also volume 3A of latest intel 64 architecture manual �
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x86 page translation

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

*32 bits aligned onto a 4-KByte boundary

1024 PDE × 1024 PTE = 220 Pages
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x86 page directory entry

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite - th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e -Ta b le B a s e A d d re ss

P a g e -D i r e c t o r y E n t r y (4 -K B y t e P a g e Ta b l e )
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x86 page table entry

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write-Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Table En ry (4-KByte Page)

P
A
T

G

t
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x86 hardware segmentation I

x86 architecture also supports segmentation
I Segment register base + pointer val = linear address
I Page translation happens on linear addresses

Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL � 0–3)
I Paging only has two, so 0 = kernel, 1,2=supervisor, 3 = user
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https://stackoverflow.com/questions/55506822/is-an-x86-cpu-in-kernel-mode-when-the-cpl-value-of-the-cs-register-is-equal-to-0


x86 hardware segmentation II
Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead.
I Most OSes use “flat mode” — set base = 0,

bounds = 0xffffffff in all segment registers,
then forget about it

I x86_64 architecture removes much segmentation support
Long answer: Has some fringe/incidental uses
I Keep pointer to thread-local storage w/o wasting normal

register
I 32-bit VMware runs guest OS in CPL 1 to trap stack faults
I OpenBSD used CS limit for W∧X when no PTE NX bit
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Making paging fast I

x86 PTs require 3 memory references per load/store
I Look up page table address in page directory
I Look up physical page number (PPN) in page table
I Actually access physical page corresponding to virtual

address
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Making paging fast II
For speed, CPU caches recently used translations
I Called a translation lookaside buffer or TLB
I Typical: 64-2k entries, 4-way to fully associative �,

95% hit rate
I Modern CPUs add second-level TLB with ∼1,024+

entries; often separate instruction and data TLBs
I Each TLB entry maps a VPN → PPN + protection

information
33
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Making paging fast III

On each memory reference
I Check TLB, if entry present get physical address fast
I If not, walk page tables, insert in TLB for next time

(Must evict some entry)
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TLB details I

TLB operates at CPU pipeline speed =⇒ small, fast
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TLB details II

Complication: what to do when switching address space?
I Flush TLB on context switch (e.g., old x86)
I Tag each entry with associated process’s ID (e.g.,

MIPS)
I In general, OS must manually keep TLB valid

I Changing page table in memory won’t affect cached TLB
entry
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TLB details III
E.g., on x86 must use invlpg instruction
I Invalidates a page translation in TLB
I Note: very expensive instruction (100–200 cycles)
I Must execute after changing a possibly used page

table entry
I Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown �)
I Requires sending an interprocessor interrupt (IPI)
I Remote processor must execute invlpg instruction
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x86 Paging Extensions I

PSE: Page size extensions
I Setting bit 7 in PDE makes a 4 MiB translation (no

PT)
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x86 Paging Extensions II

PAE: Page address extensions
I Newer 64-bit PTE format allows 36+ bits of physical

address
I Page tables, directories have only 512 entries
I Use 4-entry Page-Directory-Pointer Table to regain 2

lost bits
I PDE bit 7 allows 2 MiB translation
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x86 Paging Extensions III

Long mode PAE (x86-64)
I In Long mode, pointers are 64-bits
I Extends PAE to map 48 bits of virtual address (next

slide)
I Why are aren’t all 64 bits of VA usable?
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x86 long mode paging

Sign Extend Level-4 offset

Page-Map

(PML4)

Virtual Address

Pointer Offset

Page Directory-

Offset

Page Directory Page-Table

Offset

Physical-

Page Offset

Table Table Table Table

Page
Page-

DirectoryPointer
Directory

Page-
Page-Map

Level-4

4-Kbyte

Physical

Page

01112202129303839474863

Physical

Address

PTE

PDE

PDPE

PML4E

9999

52

52

52

52

1251

CR3Page-Map L4 Base Addr

12
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Where does the OS live? I

In its own address space?
I Can’t do this on most hardware (e.g., syscall instruction won’t

switch address spaces)
I Also would make it harder to parse syscall arguments passed as

pointers
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Where does the OS live? II
So in the same address space as process
I Use protection bits to prohibit user code from writing kernel

Typically all kernel code, most data at same VA in every addrspace
I On x86, must manually set up page tables for this
I Usually just map kernel in contiguous virtual memory when

boot loader puts kernel into contiguous physical memory
I Some hardware puts physical memory (kernel-only) somewhere

in virtual address space
I Typically kernel goes in high memory; with signed numbers,

can mean small negative addresses (small linker relocations)

43



Pintos � memory layout

Data segment

Kernel/

User stack

Pseudo-physical memory
0xffffffff

0x00000000

0x08048000

(PHYS_BASE)
0xc0000000

BSS / Heap

Code segment

Invalid virtual addresses
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Very different MMU: MIPS
I Hardware checks TLB on application load/store

I References to addresses not in TLB trap to kernel
I Each TLB entry has the following fields:

Virtual page, Pid, Page frame, NC, D, V, Global
I Kernel itself unpaged

I All of physical memory contiguously mapped in high VM
(hardwired in CPU, not just by convention as with Pintos)

I Kernel uses these pseudo-physical addresses
I User TLB fault hander very efficient

I Two hardware registers reserved for it
I utlb miss handler can itself fault—allow paged page tables

I OS is free to choose page table format!
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Example: Paging to disk
gcc needs a new page of memory, so OS reclaims one from emacs:
I If page is clean (i.e., also stored on disk):

I E.g., page of text from emacs binary on disk
I Can always re-read same page from binary
I So okay to discard contents now & give page to gcc

I If page is dirty (meaning memory is only copy)
I Must write page to disk first before giving to gcc

I Either way:
I Mark page invalid in emacs
I emacs will fault on next access to virtual page

I On fault, OS reads page data back from disk into new page,
maps new page into emacs, resumes executing
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Paging in day-to-day use

I Demand paging
I Growing the stack
I BSS page allocation
I Shared text
I Shared libraries
I Shared memory
I Copy-on-write (fork, mmap, etc.)
I Q: Which pages should have global bit set on x86?
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