
Eda Bahar 02/05/2025
ebahar@gsu.edu.tr
edaabahar@gmail.com

Operating Systems
INF333

TP06
Mutexes

1

mailto:ebahar@gsu.edu.tr
mailto:edaabahar@gmail.com

About this TP

• In this TP, you will be learning:

• Mutexes

2

Introduction

• What is concurrency? Concurrency refers to the execution of multiple tasks at the same
time. This can occur in multithreaded programs or in multi-process environments.

• Why do we need synchronization? When multiple threads access shared resources
(e.g., memory, files, or databases) without coordination, it can lead to:

• Race conditions (unpredictable behavior)

• Data corruption

• Inconsistent states

• The concept of mutual exclusion: Mutual exclusion (mutex) ensures that only one
thread can access a shared resource at a time, preventing conflicts.

Mutex?

• A mutex (short for "mutual exclusion") is a synchronization primitive that
allows only one thread to access a resource at a time.

• How does a mutex work?

• A thread locks the mutex before accessing a shared resource.

• Other threads trying to access the same resource must wait until the
mutex is unlocked.

• The original thread unlocks the mutex when it is done.

Mutex Implementation

• lock() -> Locks the mutex, blocking other threads.

• unlock() -> Releases the mutex, allowing other threads to proceed.

• try_lock() -> Attempts to lock the mutex without blocking.

Example

Problems with Mutexes

• Deadlocks: Occur when two or more threads wait for each other to release a
lock.

• Solution: Use lock ordering. Always lock mutexes in the same order.

