
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture II
2023-10-12

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

https://burakarslan.com/inf400

Why so many Programming Languages?

Some criteria give way to precise classification.

Others draw fuzzier borders.

And some languages are just multi-paradigm

Why so many Programming Languages?

Programming languages are tools used by engineers.

Why so many Programming Languages?

... and just like any tool;

I They aim to serve their purpose in the most ergonomic way.

I It’s always possible to make improvements, but the real trick is
to be good enough.

I Pain increases as you stray further from the intended purpose.

Why so many Programming Languages?

... and just like any engineering tool;

They either cut costs or create value

Why so many Programming Languages?

... and just like engineers;

No single approach is objectively better than another

... as long as goals are met!

Why so many Programming Languages?

... and just like engineers;

No single approach is objectively better than another

... as long as goals are met!

Why so many Programming Languages?

But we still can evaluate software quality based on some criteria:

I Abstractions (how leaky?)

I Code reuse (how DRY? too general?)

I SOLID

I CMMI

Why so many Programming Languages?

Programming languages are very costly to develop:

I Kickass tooling (portable compiler/interpreter, editor,
debugger, etc)

I Infrastructure (Package repo, CI, Releases)

I Evangelism/Outreach

I Trademarks, licenses, advertising

except Javascript!

Why so many Programming Languages?

Programming languages are very costly to develop:

I Kickass tooling (portable compiler/interpreter, editor,
debugger, etc)

I Infrastructure (Package repo, CI, Releases)

I Evangelism/Outreach

I Trademarks, licenses, advertising

except Javascript!

Why so many Programming Languages?

Programming languages are costly to adopt as well:

I Training costs

I Employee turnover

I Interfacing costs

I Rewriting costs

Why so many Programming Languages?

Yet if you find a niche and serve it well,

you can give way to enormous cost reductions.

... and you can have that small corner of the universe to yourself.

Why so many Programming Languages?

Yet if you find a niche and serve it well,

you can give way to enormous cost reductions.

... and you can have that small corner of the universe to yourself.

Types of Programming Languages

Some criteria give way to precise classification.

Others draw fuzzier borders.

And some languages are just multi-paradigm

Types of Programming Languages
Imperative vs Declarative

Declarative The desired program output is described as a set of
constraints

Imperative The desired program output is described as a sequence
of instructions

Types of Programming Languages
Imperative vs Declarative

Structured Query Language (SQL)

Imperative or Declarative?

Types of Programming Languages
Imperative vs Declarative

Structured Query Language (SQL)

Declarative

Types of Programming Languages
Imperative vs Declarative

SELECT * FROM employees WHERE building=’FIT’;

Types of Programming Languages
Imperative vs Declarative

UPDATE employees SET building=NULL

WHERE building=’FIT’;

Types of Programming Languages
Imperative vs Declarative

CREATE TABLE employees (

(...)

building TEXT REFERENCES buildings(name)

ON DELETE SET NULL

)

Types of Programming Languages
Imperative vs Declarative

I SQL specification says nothing about implementation

I Compiled to a sequence of actions called the Query Plan

I eg. SQLite’s query plan is interpreted by its internal VM (the
Bytecode Engine)

Types of Programming Languages
Imperative vs Declarative

HyperText Markup Language (HTML)

Imperative or Declarative?

Declarative

Types of Programming Languages
Imperative vs Declarative

HyperText Markup Language (HTML)

Imperative or Declarative?

Declarative

Types of Programming Languages
Imperative vs Declarative

Cascading Style Sheets (CSS)

Imperative or Declarative?

Declarative

Types of Programming Languages
Imperative vs Declarative

Cascading Style Sheets (CSS)

Imperative or Declarative?

Declarative

Types of Programming Languages
Imperative vs Declarative

Qt Designer’s .ui files (XML-Based)

Imperative or Declarative?

Declarative

Compiled to C++ header files

Types of Programming Languages
Imperative vs Declarative

Qt Designer’s .ui files (XML-Based)

Imperative or Declarative?

Declarative

Compiled to C++ header files

Types of Programming Languages
Imperative vs Declarative

Qt Designer’s .ui files (XML-Based)

Imperative or Declarative?

Declarative

Compiled to C++ header files

Types of Programming Languages
Imperative vs Declarative

C++

Imperative or Declarative?

Imperative

Types of Programming Languages
Imperative vs Declarative

C++

Imperative or Declarative?

Imperative

Types of Programming Languages
Imperative vs Declarative

x64

Imperative or Declarative?

Imperative

What does this tell you?

Types of Programming Languages
Imperative vs Declarative

x64

Imperative or Declarative?

Imperative

What does this tell you?

Types of Programming Languages
Imperative vs Declarative

x64

Imperative or Declarative?

Imperative

What does this tell you?

Types of Programming Languages
Strong vs Weak Typing

A distinction with a fuzzier border compared to others

Types of Programming Languages
Strong vs Weak Typing

Discuss the following C fragment:

int a = 0; /* ok */

a = "string"; /* ?? */

Types of Programming Languages
Strong vs Weak Typing

Discuss the following C fragment:

int *a = NULL; /* ok */

a = "string"; /* ?? */

Types of Programming Languages
Strong vs Weak Typing

Discuss the following C++ fragment:

SomeClass a = 0; /* ok */

a = "string"; /* ?? */

Types of Programming Languages
Strong vs Weak Typing

Weak typing

When the memory layout of a variable can be mutated

implicitly

Types of Programming Languages
Static vs Dynamic Typing

Discuss the following C++ fragment:

auto a = 0;

std::vector v{1,2,3};

What are the types of a and v?

Types of Programming Languages
Static vs Dynamic Typing

Static typing

When the type of a variable can be known at

compile-time.

Types of Programming Languages
Functional vs Procedural

I Pure functions symbolize values

I Statements modify program state

I C++ is multi-paradigm

C++ Recap
OOP

OOP in C++ has 3 pillars:

I Encapsulation

I Inheritance

I Polymorphism

C++ Recap
OOP - Encapsulation

Objects: When data comes alive

I Public interface, private implementation

I Accessors: Used to ask questions to an object

I Method calls (C++) vs Message Passing (Smalltalk)

C++ Recap
OOP - Encapsulation

Objects: When data comes alive

I Public interface, private implementation

I Accessors: Used to ask questions to an object

I Method calls (C++) vs Message Passing (Smalltalk)

C++ Recap
OOP - Encapsulation

Objects: When data comes alive

I Public interface, private implementation

I Accessors: Used to ask questions to an object

I Method calls (C++) vs Message Passing (Smalltalk)

C++ Recap
OOP - Encapsulation

C++ struct vs class;

struct S {

int a; // public

};

class C {

int a; // private

};

C++ Recap
OOP - Inheritance / Polymorphism

Static dispatch: the usual way

struct A {
auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
auto who() { return "B"; }

};

int main() {
A *a = new A();
printf("%s\n", a->who());

}

C++ Recap
OOP - Inheritance / Polymorphism

Static dispatch: the usual way

struct A {
auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
auto who() { return "B"; }

};

int main() {
A *a = new B();
printf("%s\n", a->who());

}

C++ Recap
OOP - Inheritance / Polymorphism

Static dispatch: the templates way

struct A {
auto who() { return "A"; }

};

struct B {
auto who() { return "B"; }

};

template <typename T>
auto greet(const T &t) {

return fmt::format("Hello, this is {}", who());
}

int main() {
auto v = new A();
printf("%s\n", greet(*v));
...

C++ Recap
OOP - Inheritance / Polymorphism

Static dispatch: the templates way

struct A {
auto who() { return "A"; }

};

struct B {
auto who() { return "B"; }

};

template <typename T>
auto greet(const T &t) {

return fmt::format("Hello, this is {}", who());
}

int main() {
auto v = new B();
printf("%s\n", greet(*v));
...

C++ Recap
OOP - Inheritance / Polymorphism

Dynamic dispatch

struct A {
virtual auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
virtual auto who() override { return "B"; }

};

int main() {
A *a = new A();
printf("%s\n", a->who());

}

C++ Recap
OOP - Inheritance / Polymorphism

Dynamic dispatch

struct A {
virtual auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
virtual auto who() override { return "B"; }

};

int main() {
A *a = new B();
printf("%s\n", a->who());

}

C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t *r = new int32_t(i);

return r;

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I i is allocated on the heap: Needs to be manually deleted.

C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t r(i);

return &r;

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I r is allocated on the stack: It’s automatically deleted once out-of-scope

C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t r[1000000000LL];

return &r[0];

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I Stack is not infinite! By default, 8MB per thread on Linux

C++ Recap
Smart Pointers

std::unique ptr<T>

I Ties stack behavior to heap memory

I Movable, not copyable

I Calls deallocator when variable goes out of scope.

C++ Recap
Smart Pointers

std::shared ptr<T>

I unique ptr with refcount

I Copyable (you can move it if you want)

I Calls deallocator when the ref# == 0;

Kiraz/COOL

class Cons inherits List {

xcar : Int;

xcdr : List;

isNil() : Bool { false };

init(hd : Int, tl : List) : Cons {

{

xcar <- hd;

xcdr <- tl;

self;

}

}

};

Future Work

I C++

I WebAssembly

I flex/bison

	Why so many Programming Languages?
	Types of Programming Languages
	Imperative vs Declarative
	Strong vs Weak Typing
	Static vs Dynamic Typing
	Functional vs Procedural

	C++ Recap
	OOP
	OOP - Encapsulation
	OOP - Inheritance / Polymorphism
	Stack vs Heap
	Smart Pointers

	Kiraz/COOL
	Future Work

