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Why so many Programming Languages?

Some criteria give way to precise classification.

Others draw fuzzier borders.

And some languages are just multi-paradigm



Why so many Programming Languages?

Programming languages are tools used by engineers.



Why so many Programming Languages?

... and just like any tool;

I They aim to serve their purpose in the most ergonomic way.

I It’s always possible to make improvements, but the real trick is
to be good enough.

I Pain increases as you stray further from the intended purpose.
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Why so many Programming Languages?

But we still can evaluate software quality based on some criteria:

I Abstractions (how leaky?)

I Code reuse (how DRY? too general?)

I SOLID

I CMMI



Why so many Programming Languages?

Programming languages are very costly to develop:

I Kickass tooling (portable compiler/interpreter, editor,
debugger, etc)

I Infrastructure (Package repo, CI, Releases)

I Evangelism/Outreach

I Trademarks, licenses, advertising

except Javascript!
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Why so many Programming Languages?

Programming languages are costly to adopt as well:

I Training costs

I Employee turnover

I Interfacing costs

I Rewriting costs



Why so many Programming Languages?

Yet if you find a niche and serve it well,

you can give way to enormous cost reductions.

... and you can have that small corner of the universe to yourself.
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Types of Programming Languages

Some criteria give way to precise classification.

Others draw fuzzier borders.

And some languages are just multi-paradigm



Types of Programming Languages
Imperative vs Declarative

Declarative The desired program output is described as a set of
constraints

Imperative The desired program output is described as a sequence
of instructions
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Imperative vs Declarative

Structured Query Language (SQL)

Imperative or Declarative?
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Types of Programming Languages
Imperative vs Declarative

SELECT * FROM employees WHERE building=’FIT’;



Types of Programming Languages
Imperative vs Declarative

UPDATE employees SET building=NULL

WHERE building=’FIT’;



Types of Programming Languages
Imperative vs Declarative

CREATE TABLE employees (

(...)

building TEXT REFERENCES buildings(name)

ON DELETE SET NULL

)



Types of Programming Languages
Imperative vs Declarative

I SQL specification says nothing about implementation

I Compiled to a sequence of actions called the Query Plan

I eg. SQLite’s query plan is interpreted by its internal VM (the
Bytecode Engine)
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Declarative
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Imperative or Declarative?

Declarative

Compiled to C++ header files
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Imperative or Declarative?

Imperative

What does this tell you?



Types of Programming Languages
Strong vs Weak Typing

A distinction with a fuzzier border compared to others



Types of Programming Languages
Strong vs Weak Typing

Discuss the following C fragment:

int a = 0; /* ok */

a = "string"; /* ?? */
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Types of Programming Languages
Strong vs Weak Typing

Discuss the following C++ fragment:

SomeClass a = 0; /* ok */

a = "string"; /* ?? */



Types of Programming Languages
Strong vs Weak Typing

Weak typing

When the memory layout of a variable can be mutated

implicitly



Types of Programming Languages
Static vs Dynamic Typing

Discuss the following C++ fragment:

auto a = 0;

std::vector v{1,2,3};

What are the types of a and v?



Types of Programming Languages
Static vs Dynamic Typing

Static typing

When the type of a variable can be known at

compile-time.



Types of Programming Languages
Functional vs Procedural

I Pure functions symbolize values

I Statements modify program state

I C++ is multi-paradigm



C++ Recap
OOP

OOP in C++ has 3 pillars:

I Encapsulation

I Inheritance

I Polymorphism



C++ Recap
OOP - Encapsulation

Objects: When data comes alive

I Public interface, private implementation

I Accessors: Used to ask questions to an object

I Method calls (C++) vs Message Passing (Smalltalk)
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C++ Recap
OOP - Encapsulation

C++ struct vs class;

struct S {

int a; // public

};

class C {

int a; // private

};



C++ Recap
OOP - Inheritance / Polymorphism

Static dispatch: the usual way

struct A {
auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
auto who() { return "B"; }

};

int main() {
A *a = new A();
printf("%s\n", a->who());

}
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Static dispatch: the templates way

struct A {
auto who() { return "A"; }

};

struct B {
auto who() { return "B"; }

};

template <typename T>
auto greet(const T &t) {

return fmt::format("Hello, this is {}", who());
}

int main() {
auto v = new A();
printf("%s\n", greet(*v));
...
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C++ Recap
OOP - Inheritance / Polymorphism

Dynamic dispatch

struct A {
virtual auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
virtual auto who() override { return "B"; }

};

int main() {
A *a = new A();
printf("%s\n", a->who());

}



C++ Recap
OOP - Inheritance / Polymorphism

Dynamic dispatch

struct A {
virtual auto who() { return "A"; }
auto greet() { return fmt::format("Hello, I am {}", who()); }

};

struct B: public A {
virtual auto who() override { return "B"; }

};

int main() {
A *a = new B();
printf("%s\n", a->who());

}



C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t *r = new int32_t(i);

return r;

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I i is allocated on the heap: Needs to be manually deleted.



C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t r(i);

return &r;

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I r is allocated on the stack: It’s automatically deleted once out-of-scope



C++ Recap
Stack vs Heap

Consider the following C++ fragment:

int32_t *f(int32_t i) {

int32_t r[1000000000LL];

return &r[0];

}

int main() {

auto i = f(50);

printf("%x %d\n", i, *i);

return 0;

}

I Stack is not infinite! By default, 8MB per thread on Linux



C++ Recap
Smart Pointers

std::unique ptr<T>

I Ties stack behavior to heap memory

I Movable, not copyable

I Calls deallocator when variable goes out of scope.



C++ Recap
Smart Pointers

std::shared ptr<T>

I unique ptr with refcount

I Copyable (you can move it if you want)

I Calls deallocator when the ref# == 0;



Kiraz/COOL

class Cons inherits List {

xcar : Int;

xcdr : List;

isNil() : Bool { false };

init(hd : Int, tl : List) : Cons {

{

xcar <- hd;

xcdr <- tl;

self;

}

}

};



Future Work

I C++

I WebAssembly

I flex/bison
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