
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture IV
2023-10-26

mailto:ext-inf400@burakarslan.com


Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400


First assignment is due next week!

Deadline: 2023-11-01 23:59

2



Submission format

A file named <student-id>.tar.xz that contains:
I A file named sol1.py that contains the expected python script.
I A directory named sol2 that contains the lexical analyzer with

an optional hw1.{md,pdf} with anything noteworthy.

3



Tips on Building Large Systems

Compilers are big projects with many moving parts.
I KISS (Keep It Simple, Stupid!)
I Don’t optimize prematurely
I Design systems that can be tested (and test them !)
I It is easier to modify a working system than to get a system

working

4



Implementing Lexers

Spec Regex NFA DFA Tables

5



Implementing Lexers
Regular Expressions

Remember: Regular expressions specify sets of strings.

∀A,B ∈ s, sets of strings over alphabet Σ;

I Neutral: {""} =⇒ ε1 6= ∅
I Union: A ∪ B =⇒ (A|B)

I Concatenation: {s1s2 | s1 ∈ A ∧ s2 ∈ B} =⇒ AB

I Range: {"a", "b", . . . , "z"} =⇒ [a− z]

I Range Excl.: s \ {"a", "b", . . . , "z"} =⇒ [^a-z]

1singleton with an empty string
6



Implementing Lexers
Regular Expressions

Repetitions:
Let A ∈ s, sets of strings over alphabet Σ, An = AA . . .A

n

I Optional: A + ε =⇒ A?

I Zero or more:
⋃

i≥0 A
i =⇒ A∗

I One or more:
⋃

i>0 A
i =⇒ A+

I Explicit:
I

⋃
i≥n A

i =⇒ A{n}
I

⋃
i≥n,i≤m Ai =⇒ A{n,m} where n ≤ m

7



Implementing Lexers

Regular expressions
are implemented using

Finite State Automata

8



Implementing Lexers
Finite State Automata

Two types:

I DFA: Deterministic Finite Automata
I NFA: Nondeterministic Finite Automata

9



Implementing Lexers
Finite State Automata

Two types:

I DFA:
I No more than one move per input
I ε moves are forbidden

I NFA:
I Zero or more moves per input
I ε moves are allowed

10



Implementing Lexers
Finite State Automata

Regular expressions have direct NFA representations.
Eg. (A|B):

. . .

Aa0 an

Bb0 bm

. . .

ε

ε

ε

ε

11



Implementing Lexers
Finite State Automata

Regular expressions have direct NFA representations.
Eg. AB:

. . . Aa0 an Bb0 bm . . .ε ε ε

11



Implementing Lexers
Finite State Automata

NFA and DFA are equivalent and recognize both
regular languages.

DFAs are faster to execute

12



Implementing Lexers
Finite State Automata

Conversion algorithm: Simulation / Tracing (recording execution)

I Start state of the DFA = States reachable from the start state
of the NFA through ε input

I Let n, n′, n′′, . . . states from NFA,
I Let d , d ′, d ′′, . . . states from DFA,
I Add a new state d →

a
d ′ if and only if n′ is reachable from n,

including ε input

13



Implementing Lexers
Finite State Automata

n0start n1

nt1 nt2

nb1 nb2

n2
b

ε

ε

c

ε

d

ε

≡

n0start

d0

n1,t1,b1

d1

nt2,2

d2

nb2,2

d3

b c

d

14



Implementing Lexers
Implementation

We use tables / grids / 2D arrays:

input
b c d

d0 d1
d1 d2 d3
d2
d3

15



Implementing Lexers
Implementation

All in all, lexer generators’ job boil down to:
I Unify all regular expressions into a single NFA
I Perform NFA ⇒ DFA conversion
I Create DFA grid
I Execute DFA

16


	Implementing Lexers
	Regular Expressions
	Finite State Automata
	Implementation


