Compilers
INF-400

Burak Arslan

ext-inf4000@burakarslan.com

Galatasaray Universitesi

Lecture IV
2023-10-26

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

https://burakarslan.com/inf400

First assignment is due next weekl!

Deadline: 2023-11-01 23:59

Submission format

A file named <student-id>.tar.xz that contains:
» A file named soll.py that contains the expected python script.

» A directory named so0l2 that contains the lexical analyzer with
an optional hwl.{md,pdf} with anything noteworthy.

Tips on Building Large Systems

Compilers are big projects with many moving parts.
» KISS (Keep It Simple, Stupid!)
» Don't optimize prematurely
» Design systems that can be tested (and test them!)

» |t is easier to modify a working system than to get a system
working

Implementing Lexers

Implementing Lexers

Regular Expressions

Remember: Regular expressions specify sets of strings.

VA, B € (), sets of strings over alphabet X;

» Neutral: {""} = ¢l £ o

Union: AU B = (A|B)

Concatenation: {s15, | s € A A s, € B} = AB
Range: {"a","b",...,"z"} = [a — Z]

>
>
>
» Range Excl.: @\ {"a","b",...,"z"} = [~a-Z]

Lsingleton with an empty string

Implementing Lexers

Regular Expressions

Repetitions:
Let A € (S, sets of strings over alphabet ¥, A" =AA.. A
—_

n

» Optional: A+ ¢ = A?
» Zero or more: [J;5q A" => Ax
» One or more: | J;.g A" = A+
» Explicit:
> Uizn Al = A{n}
> Uisni<m Al = A{n,m} where n < m

>0

Implementing Lexers

Regular expressions
are implemented using
Finite State Automata

Implementing Lexers

Finite State Automata

Two types:

» DFA: Deterministic Finite Automata
» NFA: Nondeterministic Finite Automata

Implementing Lexers

Finite State Automata

Two types:

> DFA:

» No more than one move per input
» = moves are forbidden

> NFA:

» Zero or more moves per input
» < moves are allowed

10

Implementing Lexers

Finite State Automata

Regular expressions have direct NFA representations.

Eg. (AIB):

11

Implementing Lexers

Finite State Automata

Regular expressions have direct NFA representations.
Eg. AB:

OAORNORORNCR®

11

Implementing Lexers

Finite State Automata

NFA and DFA are equivalent and recognize both
regular languages.

DFAs are faster to execute

12

Implementing Lexers

Finite State Automata

Conversion algorithm: Simulation / Tracing (recording execution)

>

Start state of the DFA = States reachable from the start state
of the NFA through ¢ input

Let n,n’, n”, ... states from NFA,

Let d,d’,d”,... states from DFA,

Add a new state d — d’ if and only if n’ is reachable from n,
a

including € input

13

Implementing Lexers

Finite State Automata

5O~
o (@@
@

o)

14

Implementing Lexers

Implementation

We use tables / grids / 2D arrays:

input
b|c|d
do | di
dq dr | ds
do

15

Implementing Lexers

Implementation

All in all, lexer generators’ job boil down to:
» Unify all regular expressions into a single NFA
» Perform NFA = DFA conversion
» Create DFA grid
» Execute DFA

16

	Implementing Lexers
	Regular Expressions
	Finite State Automata
	Implementation

