
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture V
2023-11-02

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400

Homework II

Homework II will be out today!

Deadline: 2023-11-08 23:59

2

Homework I

Any questions?

3

Parsing
Can we keep on using regular expressions?

Are regular expressions enough to specify a complete
programming language?

4

Parsing
Can we keep on using regular expressions?

What is the regular expression for the language of
balanced parentheses?

L = {(i)i | i ≥ 0}

5

Parsing
Can we keep on using regular expressions?

Finite Automata can’t:
I Count the number of times a state was visited.
I As a consequence, they can’t represent

nested structures.

6

Parsing
Purpose of parsing

Lexerchars Parser
Syntax
tree

tokens

7

Parsing
Purpose of parsing

We generate an Abstract Syntax Tree – with as little
information as possible.
I Parse Tree / Concrete syntax tree: contains every

detail. Language-dependent structure
I Abstract Syntax Tree: Just enough to do semantic

analysis. Mostly language-independent

8

Parsing
Purpose of parsing

Let’s see the abstract syntax tree for: 1 + 2;

OP_PLUS

L_INTEGER(10, 1) L_INTEGER(10, 2)

9

Parsing
Purpose of parsing

Let’s see the parse tree for: 1 + 2;

EXPRLIST

EXPR

STMT

OP_PLUS

L_INTEGER(10, 1) L_INTEGER(10, 2)

OP_SCOLON

10

Parsing
Purpose of parsing

Parsers also apply further validation:

Not all token arrays are valid programs!

11

Parsing
Context Free Grammars

Statements in programming languages are
nested structures.

12

Parsing
Context Free Grammars

Context Free Grammars.
are a perfect match.

13

Parsing
Context Free Grammars

Context Free Grammars: Definition:
I A set of terminals T
I A set of nonterminals N
I A start symbol s
I A set of productions

14

Parsing
Context Free Grammars

We will use a tool named Bison: Conventions:
I Terminal names are uppercase.
I Non-terminals are all lowercase.
I Starting symbol is the first symbol.

15

Parsing
Context Free Grammars

Bison algorithm:
I Start from the starting symbol given input token array.
I Replace non terminals by one of the productions on the right 1

I Repeat until only terminals remain

In other words:
I s → T0 . . .Tn

1This point is doint a lot of work here ,
16

Parsing
Context Free Grammars

Bison algorithm:
I Start from the starting symbol given input token array.
I Replace non terminals by one of the productions on the right 1

I Repeat until only terminals remain

In other words:
I s → T0 . . .Tn

1This point is doint a lot of work here ,
16

Parsing
Context Free Grammars

Terminals;
I are supposed to be the tokens recognized by the lexer
I can’t be replaced once generated, hence the name

“terminal”

17

Parsing
Context Free Grammars

Let’s see the grammar for the following language: L = {(i)i , i ≥ 0}

expr→ (expr)|ε
Or, in bison notation:

expr
: %empty
| ’(’ expr ’)’
;

18

Parsing
Context Free Grammars

Simple arithmetic example:

e → e + e|e × e|(e)|ID 2

Some strings from the above language:

x
x + (y)
x + y * z

(x + y) * z

2Remember the IDENTIFIER from lexer project? It’s the same thing
19

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation: A sequence of productions leading to a string of
terminals.

Given:

e → e + e|e × e|(e)|ID
Let’s see the derivation of:

a * b + c

I e

I e + e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

20

Parsing
Context Free Grammars

Derivation of a * b + c:
e

e

ID

× e

e

ID

+ e

ID

I e

I e × e

I e × e + e

I ID × e + e

I ID × ID + e

I ID × ID + ID

21

Parsing
Context Free Grammars

Derivation of a * b + c:
e

e

e

ID

× e

ID

+ e

ID

I e

I e × e

I e × e + e

I e × e + ID

I e × ID × ID

I ID × ID × ID

22

Parsing
Context Free Grammars

Ambiguity is BAD

23

Parsing
Context Free Grammars

Ambiguity means your language contains
ill-defined code fragments3.

3ie. Code fragments with more than one meaning
24

Parsing
Context Free Grammars

Dealing with ambiguity:
I Add visible precedence markers (tokens)
I Add implicit precedence markers (%left and %right)
I Write a non-ambiguous grammar

25

Parsing
Context Free Grammars

Dealing with ambiguity:
I Add visible precedence markers (tokens, eg. parentheses)
I Add implicit precedence markers (%left and %right)
I Write a non-ambiguous grammar

26

Parsing
Context Free Grammars

A non-ambiguous version of the below grammar

e → e + e|e × e|ID

could be as follows:

e →e + e|f + e|f
f →f × e|f × f |ID

... where the multiplication has precedence over addition

27

Next Up

I Shift-reduce or Bottom-up parsers (what bison does)
I (Maybe) other parsing algorithms
I The rest of the kiraz grammar

28

	Parsing
	Can we keep on using regular expressions?
	Purpose of parsing
	Context Free Grammars

