
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture VI
2023-11-09

mailto:ext-inf400@burakarslan.com


Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400


Kiraz

While the parsing work is going on, whe have a lot to
figure out about the details of our programming language.

2



Kiraz

Kiraz

Language Definition

3



Kiraz
Laws of Kiraz

Note the following notation:
I → This is a law of Kiraz ←

It’s one of the perks of being a language designer – we get to make
our own laws !

4



Kiraz
Variables

Here is a variable declaration that could work.

let id;

But it’d be too costly.
I → This is a compile-time error ←
I Unable to determine the type of ’id’

5



Kiraz
Variables

Here is a variable declaration that could work.

let id;

But it’d be too costly.
I → This is a compile-time error ←
I Unable to determine the type of ’id’

5



Kiraz
Variables

Here is a variable declaration that works:

let id = 0;

... only when the type of integer literals is well-defined.
I → The type of id int64 ←
I Because the type of L_INTEGER(b, 0) is int64

6



Kiraz
Variables

Here is a variable declaration that works:

let id = 0;

... only when the type of integer literals is well-defined.
I → The type of id int64 ←
I Because the type of L_INTEGER(b, 0) is int64

6



Kiraz
Variables

Here is another variable declaration that works:

let id : Int64;

... but we need a well-defined behavior for uninitialized types.
I → The value of id is void ←
I Because an uninitialized variable is different from a

default-initialized variable.

7



Kiraz
Variables

Here is another variable declaration that works:

let id : Int64;

... but we need a well-defined behavior for uninitialized types.
I → The value of id is void ←
I Because an uninitialized variable is different from a

default-initialized variable.

7



Kiraz
Variables

Here is another variable declaration:

let id : Int64 = void;

I → This is a compile-time error ←
I Because a variable can’t be initialized to an uninitialized state.

I Is it a good idea to disallow this?
I Maybe let’s also disallow types that start with lowercase letters?

8



Kiraz
Variables

Here is another variable declaration:

let id : Int64 = void;

I → This is a compile-time error ←
I Because a variable can’t be initialized to an uninitialized state.
I Is it a good idea to disallow this?

I Maybe let’s also disallow types that start with lowercase letters?

8



Kiraz
Variables

Here is another variable declaration:

let id : Int64 = void;

I → This is a compile-time error ←
I Because a variable can’t be initialized to an uninitialized state.
I Is it a good idea to disallow this?
I Maybe let’s also disallow types that start with lowercase letters?

8



Structured Programming

Let’s go back to sixties ...

9



Structured Programming
Behold the following C fragments:

int main() {
for (int i = 0; i < 10; ++i) {

printf("Hello %d\n", i);
}
return 0;

}

int main() {
int i = 0;

loop_begin:
printf("Hello %d\n", i);
if (i >= 10) {

goto loop_end;
}
++i;
goto loop_begin;

loop_end:
return 0;

}

10



Structured Programming

void print_hello(int c) {
for (int i = 0; i < c; ++i) {

printf("Hello %d\n", i);
}
return 0;

}

int main() {
print_hello(10);
return 0;

}

11



Structured Programming

int main() {
static int arg1,arg2,arg3;

arg1 = 10;
goto func_print_hello;

.

.

.
func_end_print_hello:

return 0;
}

func_print_hello:
printf("Hello %d\n", i);
if (i >= 10) {

goto loop_end;
}
++i;
goto loop_begin;

loop_end:
goto func_end_print_hello

12



Structured Programming

I break : goto loop_end;
I continue : goto loop_begin;
I return : goto func_exit;
I switch() : goto given_value;

13



Structured Programming

Our job is either;
I Cut costs
I Increase revenue

I Both ,

14



Structured Programming

Our job is either;
I Cut costs
I Increase revenue
I Both ,

14



Structured Programming

A language that prevents its user from making mistakes is:
I Cutting costs by lowering development time
I Increase revenue by accelarating feature delivery

15



Structured Programming

So it’s not like the first time a programming language
prevents actions that the underlying machines

are capable of.

16



Kiraz
Variables

Here is another variable declaration:

let id : Int64 = void;

I → This is a compile-time error ←
I Because a variable can’t be initialized to an uninitialized state.
I We will think about disallowing types that start with lowercase

letters.

17



Kiraz
Functions

Here is a function definition:

func print_hello(name) {
io.print("Hello", name);

}

I → This is a parse-time error ←
I Function ‘print_hello’ argument ‘name’ has no type

18



Kiraz
Functions

Here is a function definition:

func print_hello(name : String) {
io.print("Hello", name);

}

I → This is a parse-time error ←
I Function ‘print_hello’ is missing a return type

19



Kiraz
Functions

Here is a function definition that finally works:

func print_hello(name : String) : Void {
io.print("Hello", name);

}

I This is a mighty cute little function!

20



Kiraz
Functions

Here is another function definition:

func print_hello(name : String) : Void {
io.print("Hello", name);
return 1;

}

I → This is a compile-time error ←
I Function return value can not be converted to type

‘Void’

21



Kiraz
Functions

Here is another function definition:

func print_hello(name : String) : Void {
io.print("Hello", name);
return 1;

}

I → This is a compile-time error ←
I Function return value can not be converted to type

‘Void’

22



Kiraz
Functions

Here is another function definition:

func print_hello(name : String) : Int64 {
io.print("Hello", name);

}

I Function returns an integer of value void;

I What would it take to elevate this to a compile-time error?

23



Kiraz
Functions

Here is another function definition:

func print_hello(name : String) : Int64 {
io.print("Hello", name);

}

I Function returns an integer of value void;
I What would it take to elevate this to a compile-time error?

23



Kiraz
While loop

Here is a cute little while loop:

let i = 10;
while (i > 0) {

i = i - 1;
}

I Only boolean values inside the while control

24



Kiraz
While loop

Here is a not-so-cute little while loop:

let i = 10;
while (i) {

i = i - 1;
}

I → This is a compile-time error ←
I While only supports values of type ‘Bool’ in its

control section

25



Kiraz
if

Here is an if statement:

let i = 10;
if (i == 10) {

i = i - 1;
}
else {

i = i + 1;
}

I Currently, there is no else if statement.
I Maybe we could add elif (like python)? We will see

26



Kiraz
Class

Behold this class definition:

class C {
let i : Int64;
func get_i(): Int64 {

return i;
}

}

I All attributes are private
I All methods are public

27



Kiraz
Class

Behold this class definition:

class C {
let i : Int64 = 4;
func get_i(): Int64 {

return i;
}

}

I Attributes can have initializers

28



Kiraz
Class

Behold this class definition:

class C {
let i : Int64 = 4;
func new(i: int64): C {

let retval : C;
retval.i = i;
return retval;

}
}

I Methods can return own classes;
29



Kiraz
Module

Behold this module:

import io;

class Application {
let i = 0;
func main(args: StringArray): Int64 {

return i;
}

}

I All attributes are private
I All methods are public

30



Recap
Modules

Modules are made of:
I Zero or more import statements.
I Zero or more class statements.

31



Recap
Classes

Classes are made of:1

I Zero or more let statemens.
I Zero or more functions.

1this needs to be further elaborated, eg. see the next slide
32



Recap
Functions

Functions are made of:
I One KW_FUNC
I One IDENTIFIER
I One L_PAREN
I Zero or more typed identifiers delimited by OP_COMMA
I One R_PAREN
I One OP_COLON
I One IDENTIFIER
I One function scope

33



Recap
Scopes

Two types:
I Function scope
I Class scope

34



Recap
Function scope

Function scopes are made of the following statement types2

I let statement
I if statement
I while statement
I . . .

I Regular statement

2This list is incomplete
35


	Kiraz
	Structured Programming
	Kiraz
	Variables
	Functions
	While loop
	Class
	Module

	Recap
	Modules
	Classes
	Functions
	Scopes
	Function scope


