
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture VIII
2023-12-07

mailto:ext-inf400@burakarslan.com


Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400


Semantic Analysis

The compiler so far ...
I Lexical analysis

I Eliminates invalid tokens using . . .

I . . . regular expressions
I Syntactic analysis

I Eliminates invalid syntax trees using . . .
I . . . context-free grammars

2



Semantic Analysis

The compiler so far ...
I Lexical analysis

I Eliminates invalid tokens using . . .
I . . . regular expressions

I Syntactic analysis
I Eliminates invalid syntax trees using . . .
I . . . context-free grammars

2



Semantic Analysis

The compiler so far ...
I Lexical analysis

I Eliminates invalid tokens using . . .
I . . . regular expressions

I Syntactic analysis
I Eliminates invalid syntax trees using . . .

I . . . context-free grammars

2



Semantic Analysis

The compiler so far ...
I Lexical analysis

I Eliminates invalid tokens using . . .
I . . . regular expressions

I Syntactic analysis
I Eliminates invalid syntax trees using . . .
I . . . context-free grammars

2



Semantic Analysis

Next step is Semantic analysis:
I Checks that would complicate the grammar too much (KISS)

I See for yourself! Class stmt vs regular stmt distinction is made in the
grammar.

I Checks that can’t be modelled by context-free grammars

3



Semantic Analysis

Stuff like:
I Is a given class/function/variable declared exactly once in a

given scope?
I Are types consistent?
I Are function calls consistent?
I Do type names start with an uppercase letter whereas other

identifiers start with a lowercase letter?

4



Semantic Analysis
Scopes

Scoping Rules in Kiraz

5



Semantic Analysis
Scopes

What is the scope of an identifier?
I It’s the part of a program in which that identifier is accessible
I The same identifier may refer to different things in different

parts of the program
I Different scopes for same name don’t overlap (it’s an error

otherwise)

6



Semantic Analysis
Scopes

We need a symbol table to keep track of scopes of identifiers.
The following operations mutate the symbol table:
I Class definition (in module scope)
I Method definition (in class scope)
I Attribute definition (in class scope)
I Function definition (in module scope)
I Function argument entry (in func arg scope)
I Variable definition (in regular scope1)

1AKA Function scope
7



Semantic Analysis
Scopes in Kiraz

A scope, in kiraz
I Is wrapped by the OP_LBRACE and OP_RBRACE tokens.
I Inherits all entries from its parent scope

8



Semantic Analysis
Scopes in Kiraz

In kiraz, the following code fragment should be rejected with:
Semantic Error : Variable ’a’ is already defined

let a = 15;

func f(): Void {
let a = 5;

}

9



Semantic Analysis
Scopes in Python

Whereas in Python it’s much more malleable:

a = 15

def f():
a = 5

f(); print(a)

What would be the output?

10



Semantic Analysis
Scopes in Python

Whereas in Python it’s much more malleable:

a = 15

def f():
global a
a = 5

f(); print(a)

What would be the output?

11



Semantic Analysis
Scopes in Python

Whereas in Python it’s much more malleable:

a = 15

def f():
nonlocal a
a = 5

f(); print(a)

What would be the output?

12



Semantic Analysis
Scopes in Javascript

In Javascript it’s even crazier:

function f() {
a = 5;

}

a = 15; console.log(a)

f(); console.log(a)

What would be the output?

13



Semantic Analysis
Scopes in Javascript

In Javascript it’s even crazier:

function f() {
var a = 5;

}

a = 15; console.log(a)

f(); console.log(a)

What would be the output?

14



Semantic Analysis
Scopes in Javascript

In Javascript it’s even crazier:

function f() {
let a = 5;

}

a = 15; console.log(a)

f(); console.log(a)

What would be the output?

15



Semantic Analysis
Scopes in Javascript

In Javascript it’s even crazier:

(function() {
{

var a = 15;
}
console.log(a)

})();

What would be the output?

16



Semantic Analysis
Scopes in Javascript

In Javascript it’s even crazier:

(function() {
{

let a = 15;
}
console.log(a)

})();

What would be the output?

17



Semantic Analysis
Scopes in Kiraz (pt.2)

Back to kiraz...

Further scoping rules:
I Functions and Classes don’t obey definition order.
I ie. They can be referenced before they are defined.

18



Semantic Analysis
Scopes in Kiraz (pt.2)

Back to kiraz...

Further scoping rules:
I Functions and Classes don’t obey definition order.
I ie. They can be referenced before they are defined.

18



Semantic Analysis
Scopes in Kiraz (pt.2)

Two options to implement this:
I Require function prototypes / forward declarations like in

C/C++
I Use multiple passes for each scoping class

� this is what we are going to do

19



Semantic Analysis
Scopes in Kiraz (pt.2)

Two options to implement this:
I Require function prototypes / forward declarations like in

C/C++
I Use multiple passes for each scoping class

� this is what we are going to do

19



Semantic Analysis
Scopes in Kiraz (pt.2)

The symbol table is a class with the following interface:

void add_symbol(std::string name, Stmt::Ptr);
Stmt::Ptr get_symbol(std::string name) const;

Scope enter_scope(ScopeType, Stmt::Ptr);
void exit_scope();

/* misc. accessors */

20



Semantic Analysis
Scopes in Kiraz (examples)

Let’s see how it’s supposed to work

21



Semantic Analysis
Scopes in Kiraz (examples)

func f() : R { };
Error at 1:16: Return type ’R’ of function
’f’ is not found

22



Semantic Analysis
Scopes in Kiraz (examples)

func main() : Void { };

23



Semantic Analysis
Scopes in Kiraz (examples)

func main() : Void {
io.print("Hello world!\n");

};

Error at 2:14: Identifier ’io’ is not
found

24



Semantic Analysis
Scopes in Kiraz (examples)

import io;
func main() : Void {

io.print("Hello world!\n");
};

25



Semantic Analysis
Scopes in Kiraz (examples)

import io;
func main() : Integer64 {

io.print("Hello world!\n");
return 0;

};

26



Semantic Analysis
Scopes in Kiraz (examples)

import io;
class Main {

func say_hello() : Integer64 {
io.print("Hello world!\n");
return 0;

}
}

27



Semantic Analysis
Scopes in Kiraz (examples)

import io;
class Main {

let hello = "Hello world!\n";
func say_hello() : Integer64 {

io.print(hello);
return 0;

}
}

func main() : Integer64{
let hello = "Hello mars!\n";
io.print(hello);
return 0;

}

28



Semantic Analysis
Scopes in Kiraz (examples)

import io;

func say_hello(a: String) : Void {
let h = get_hello();
io.print(h);

}

func get_hello() : String {
return "Hello, World!\n";

}

29



Semantic Analysis
Scopes in Kiraz (examples)

class Count {
let i = 0;
func inc() : Count {

i = i + 1;
return self;

}
}

30



Semantic Analysis
Scopes in Kiraz (examples)

. . . and let’s see how it’s NOT supposed to work

31



Semantic Analysis
Scopes in Kiraz (examples)

import io;
class Main {

let hello = "Hello world!\n";
func hello() : Integer64 {

io.print(hello);
return 0;

}
}

Error at 7:5: Identifier ’hello’ is
already in symtab

32



Semantic Analysis
Scopes in Kiraz (examples)

func f(a: String, a: String) : Void {
}

Error at 2:1: Identifier ’a’ in
argument list of function ’f’ is
already in symtab

33



Semantic Analysis
Scopes in Kiraz (examples)

func f(a: Integer64) : Void {
let a = 5;

}

Error at 2:12: Identifier ’a’ is
already in symtab

34



Semantic Analysis
Scopes in Kiraz (examples)

class C {
let hello = "hello";
func hello() : Void {};

}

Error at 3:24: Identifier ’hello’ is
already in symtab

35



Semantic Analysis
Scopes in Kiraz (examples)

class C {
let hello = "hello";
func f() : Void {

let hello = "world";
}

}

Error at 4:17: Identifier ’hello’ is
already in symtab

36



Semantic Analysis
Scope Types

Kiraz has:
I %100 static scoping like eg. C
I Unlike eg. Python

a = 5
del a

37



Semantic Analysis
Scope Types

We need scope types to determine implicit identifiers:
I Module

I All class and func names are in scope anywhere
I Class - has SelfType

I All attribute and method names are in scope anywhere
I Function - doesn’t allow func or class keywords

I Variable names are made available in order (ie not before being
defined)

I Method - same as above, additionally has self
I All attribute and method names are in scope anywhere

38



Semantic Analysis
Subsymbol Lookup

The following statements can contain other symbols:
I Modules
I Classes

39



Semantic Analysis
Types

Types in Kiraz

40



Semantic Analysis
Types

Types:
I Another concept whose definition varies from language to

language
I The set of operations that a value can handle are given names

called “types”.

41



Semantic Analysis
Types

A hot topic in any language discussion:
I Primitives vs user-defined types (classes)
I Statically typed (ki) vs dynamically typed (python, js) languages
I It’s all integers all the way down (in most (all?) ISA)

42



Semantic Analysis
Types

Categories of types in Kiraz:
I Primitives vs user-defined types (classes)
I Statically typed vs dynamically typed vs untyped languages
I Operations applied to types are part of the semantics

43



Semantic Analysis
Types

Same data, but different meanings:

double d = 3.14159;
long l = *((long*)&d); // 0x400921F9F01B866E

. . . and different operations!

44



Semantic Analysis
Types

Dynamically typed == just one type?
I True at the implementation level
I Ergonomically – not so much.

45



Semantic Analysis
Types

Duck typing:

def add(a, b):
return a + b

double add(double a, double b)
{ return a + b; }

int add(int a, int b)
{ return a + b; }

// etc...

46



Semantic Analysis
Types

Duck typing:

def add(a, b):
return a + b

Run-time error

template <typename L, typename R>
auto add(L a, R b)

{ return a + b; }
// etc...

Compile-time error

47



Semantic Analysis
Types

Static vs dynamic typing:
I Debate still not settled
I Optional run-time type checking vs compile-time type systems

with;
I Ever-increasing complexity
I Unsafe casts

48



Semantic Analysis
Types

Actually, no language is purely static or dynamic:
I Modern python has optional type checking support
I Javascript has Typescript
I C can cast any pointer to each other
I C++ additionally has std::any, std::variant, templates,

etc.
I Also boost::variant, QVariant, etc.

49


	Semantic Analysis
	Scopes
	Scopes in Kiraz
	Scopes in Python
	Scopes in Javascript
	Scopes in Kiraz (pt.2)
	Scopes in Kiraz (examples)
	Scope Types
	Subsymbol Lookup
	Types


