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Semantic Analysis
Types in Kiraz

Types in Kiraz (cont’d)

2



Semantic Analysis
Types in Kiraz

Two categories of types:
I Builtins (primitives plus special types like Module, Function

etc.)
I User-defined types (classes, defined in terms of builtins)
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Types in Kiraz

Type checking is two-stage process:
I Propagating the types
I Verifying the types and associated operations
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Semantic Analysis
Types in Kiraz

Type checking formalism:
I Just simple logic with some fancy notation
I Translated to C++ manually
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Semantic Analysis
Types in Kiraz

If e1 has type Integer64 and e2 has type Integer64,
I then e1 + e2 has type Integer64

becomes:

(e1 : Integer64 ∧ e2 : Integer64)⇒ e1 + e2 : Integer64
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... which is called an inference rule:

Hypothesis1 ∧ · · · ∧ Hypothesisn ⇒ Conclusion
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Types in Kiraz

With a more compact notation:

` H1 · · · ` Hn

C
eg.

` e1 : Integer64 ` e2 : Integer64
` e1 + e2 : Integer64

(`: It is provable that . . . )
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`1 is an int. lit.
`1:Integer64

`2 is an int. lit.
`2:Integer64

` 1 + 2 : Integer64

(You may notice that the structure is the same as the AST)
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Note that hypotheses are optional:

` let x : Type : Type
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You need to cover every single corner case.

During the language design phase, a considerable amount of time is
spent on dealing with corner cases.
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You won’t always be successful!

C/C++ is full of undefined/unspecified/implementation defined
behavior. eg:

int a = 5;
int b = (++a + a++); // UB!

12



Semantic Analysis
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An example from kiraz:

` e1 : Boolean e2 : StatementList
` while e1 do e2 : Void

Any statement whose type computes to Void can exist in isolation,
but can’t be moved around

Or could it?
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Semantic Analysis
Type Environment

Let’s look at the following code fragment:

let a = x + y;

Where does the type information come from?
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Semantic Analysis
Type Environment

The compiler needs to maintain a separate type
environment in addition to the symbol table to remember

_previously seen stuff_
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Semantic Analysis
Type Environment

Type environment is:
I A function that maps identifiers to types.
I See the get_symbol(SymbolTable &) and

get_subsymbol(SymbolTable &) functions in the kiraz
codebase
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Semantic Analysis
Type Environment

Some properties of the type environment:
I The type environment gives types to the free identifiers in the

current scope
I The type environment is passed down the AST from the root

towards the leaves
I Types are computed up the AST from the leaves towards the

root
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