
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture IX
2023-12-14

mailto:ext-inf400@burakarslan.com


Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400


Semantic Analysis
Types in Kiraz

Types in Kiraz (cont’d)

2



Semantic Analysis
Types in Kiraz

Two categories of types:
I Builtins (primitives plus special types like Module, Function

etc.)
I User-defined types (classes, defined in terms of builtins)

3



Semantic Analysis
Types in Kiraz

Type checking is two-stage process:
I Propagating the types
I Verifying the types and associated operations

4



Semantic Analysis
Types in Kiraz

Type checking formalism:
I Just simple logic with some fancy notation
I Translated to C++ manually

5



Semantic Analysis
Types in Kiraz

If e1 has type Integer64 and e2 has type Integer64,
I then e1 + e2 has type Integer64

becomes:

(e1 : Integer64 ∧ e2 : Integer64)⇒ e1 + e2 : Integer64

6



Semantic Analysis
Types in Kiraz

... which is called an inference rule:

Hypothesis1 ∧ · · · ∧ Hypothesisn ⇒ Conclusion

7



Semantic Analysis
Types in Kiraz

With a more compact notation:

` H1 · · · ` Hn

C
eg.

` e1 : Integer64 ` e2 : Integer64
` e1 + e2 : Integer64

(`: It is provable that . . . )

8



Semantic Analysis
Types in Kiraz

`1 is an int. lit.
`1:Integer64

`2 is an int. lit.
`2:Integer64

` 1 + 2 : Integer64

(You may notice that the structure is the same as the AST)

9



Semantic Analysis
Types in Kiraz

Note that hypotheses are optional:

` let x : Type : Type

10



Semantic Analysis
Types in Kiraz

You need to cover every single corner case.

During the language design phase, a considerable amount of time is
spent on dealing with corner cases.

11



Semantic Analysis
Types in Kiraz

You won’t always be successful!

C/C++ is full of undefined/unspecified/implementation defined
behavior. eg:

int a = 5;
int b = (++a + a++); // UB!

12



Semantic Analysis
Types in Kiraz

An example from kiraz:

` e1 : Boolean e2 : StatementList
` while e1 do e2 : Void

Any statement whose type computes to Void can exist in isolation,
but can’t be moved around

Or could it?

13



Semantic Analysis
Type Environment

Let’s look at the following code fragment:

let a = x + y;

Where does the type information come from?

14



Semantic Analysis
Type Environment

The compiler needs to maintain a separate type
environment in addition to the symbol table to remember

_previously seen stuff_

15



Semantic Analysis
Type Environment

Type environment is:
I A function that maps identifiers to types.
I See the get_symbol(SymbolTable &) and

get_subsymbol(SymbolTable &) functions in the kiraz
codebase

16



Semantic Analysis
Type Environment

Some properties of the type environment:
I The type environment gives types to the free identifiers in the

current scope
I The type environment is passed down the AST from the root

towards the leaves
I Types are computed up the AST from the leaves towards the

root

17


