
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture X
2024-12-12

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400

Runtime Environments (cont’d)

2

Management of run-time resources

Correspondence between:
I static (compile-time) and
I dynamic (run-time) structures

Storage organization

3

Management of run-time resources

Execution of a program is initially under the control of the
runtime environment.
I This is the same for machine code, WASM running on

OS, WASM running in a browser, Java Bytecode
interpreted by the JVM, etc.

4

Management of run-time resources

When a program is invoked:
I The OS allocates space for the program
I The code is loaded into part of the space
I The OS jumps to the entry point (i.e., main)

5

A process’s view of the world
Each process has own view of machine a

I Its own address space
I Its own virtual CPU (through

preemptive multitasking)
Simplifies programming model
I gcc does not care that firefox is

running
aThis slide is from INF-333 L03S12

6

Management of run-time resources

Note that these pictures are simplifications.

A WASM module can have acces to:
I multiple memory blocks
I an "infinite" number of registers

7

Management of run-time resources

It’s the compiler’s job to:
I Generating code in the format that the loader expects
I Orchestrating the use of the heap (dynamic memory)

and data/text (global static memory).

8

Management of run-time resources
Globals

I All references to a global variable point to the same
object

I Globals are assigned a fixed address once
I Variables with fixed address are statically allocated

Depending on the language, there may be other
statically allocated values

9

Management of run-time resources
Heap

I A value that outlives the procedure that creates
(C++)

void foo() { new Bar }

I The Bar instance must survive deallocation of foo’
stack frame

I Languages with dynamically allocated data use a heap
to store dynamic data

10

Management of run-time resources
Heap

The text/code area contains object code:
I For most languages, fixed size and read only

The static area contains data (not code) with fixed
addresses (e.g., global data)
I Fixed size, may be readable or writable

Heap contains all other data:
I In C, heap is managed by malloc and free

11

Management of run-time resources
Other Memory

Both the heap and the stack grow:
I Must take care that they don’t grow into each other
I In Kiraz’ case, this ensured by the WASM runtime
I If we grow beyond the memory limits, the runtime is

nice enough to generate an unrecoverable trap and
terminates execution

12

Management of run-time resources
Data Layout

Low-level details of machine architecture are important in
laying out data for correct code and maximum
performance
I Chief among these concerns is alignment
I WASM runtime can’t protect from bad memory access

patterns

13

Management of run-time resources
Alignment

Most machines are 32 or 64 bit
I 8 bits in a byte
I 4 bytes in a word
I Machines are either byte or word addressable

14

Management of run-time resources
Alignment

Data is word aligned if it begins at a word boundary
I Most machines have some alignment restrictions
I Or performance penalties for poor alignment

15

Management of run-time resources
Alignment

Example: A string:

"Hello"

Takes 5 characters (without a terminating \0)
I To word align next datum, add 3 "padding" characters

to the string
I The padding is not part of the string, it’s just wasted

unused memory
16

Management of run-time resources
Alignment

WebAssembly has the (data) instruction to manage
static memory 1

I We need static memory to implement the String
type

1ie. memory whose contents are known at compile-time
17

Management of run-time resources
Alignment

We have our WasmContext companion class for the code
generation step 2

I One of its jobs is to manage the static memory (data
section).

I Any string literal encountered in the source code finds
itself at a well-known location in the data section

2Just like the SymbolTable class we used during code verification,
18

Implementing Kiraz Primitives in WASM
Boolean

The Boolean type is the simplest to implement.
I What should the below statements return?

I let b1: Boolean;
I let b2: Boolean = true;
I let b3: Boolean = false;
I b1 == b2;
I b1 == b3;
I b2 == b3;

I Which WebAssembly type(s) to use to implement
Boolean?

19

Implementing Kiraz Primitives in WASM
Integer64

The Integer64 is next:
I What should the below statements return?

I let i1: Integer64;
I let i2: Integer64 = 1;
I let i3: Integer64 = 2;
I i1 == i1;
I i1 == i2;
I i2 == i2;
I i1 == i3;
I i2 == i3;

I Which WebAssembly type(s) to use to implement
Integer64?

20

Implementing Kiraz Primitives in WASM
String

The String is last:
I What should the below statements return?

I let s1: String;
I let s2: String = "a";
I let s3: String = "b";
I s1 == s1;
I s1 == s2;
I s2 == s2;
I s1 == s3;
I s2 == s3;

I Which WebAssembly type(s) to use to implement
String?

21

Implementing Key Operations in WASM
io.print()

The only way to call io.print() is to first implement
the import statement.
I Note that io.print() is part of the Kiraz language

definition
I Also note that the io nor the io.print identifiers

are writable.
I ⇒ We can hardcode the function signature(s) of the

io.print() variants in the compiler code.
I Use the (import) instruction

22

Implementing Key Operations in WASM
io.print()

We only have one connection to the outside world:
I io.print(): Takes a single String, Integer64 or

Boolean argument. Ends up calling the
console.log function with the given data.

I How does io.print() deal with different types?

23

Implementing Key Operations in WASM
let

The let statement:
I Is only allowed in some contexts. What are they?
I We say that code generated for the let statement is

context-dependent.

24

Implementing Key Operations in WASM
func

The func statement:
I Is only allowed in some contexts.
I Can we say that the generated for the func statement

is context-dependent?

25

Implementing Key Operations in WASM
if

The if statement:
I Is only allowed in some contexts.
I Can we say that the generated for the if statement is

context-dependent?

26

Implementing Key Operations in WASM
OP_ADD

Integer examples:
I let i1: Integer64;
I let i2: Integer64 = 1;
I let i3: Integer64 = 2;
I i1 + i1;
I i1 + i2;
I i2 + i2;
I i1 + i3;
I i2 + i3;

27

Implementing Key Operations in WASM
OP_ADD

String examples:
I let s1: String;
I let s2: String = "a";
I let s3: String = "b";
I s1 + s1;
I s1 + s2;
I s2 + s2;
I s1 + s3;
I s2 + s3;

28

Implementing Key Operations in WASM
OP_ADD

Boolean examples:
I let b1: Boolean;
I let b2: Boolean = true;
I let b3: Boolean = false;
I b1 + b1;
I b1 + b2;
I b2 + b2;
I b1 + b3;
I b2 + b3;

29

Writing and Debugging WebAssembly

I The methodology is to first implement the code in
WAT manually

I Then make the compiler emit the given code
I Use named (local) instructions for variables and

temporaries
I Chromium seems to have the nicest WASM debugger

– use it!

30

https://developer.chrome.com/blog/wasm-debugging-2020/

HW3 Advice
gen_wat

The gen_wat() function is our entrypoint to the code
generation stage.
Two variants:
I Node::Ptr gen_wat(WasmContext &);
I Node::Ptr gen_wat(WasmContext &, const

std::string &id) const;

31

HW3 Advice
gen_wat

I const variant: Generates code for shared nodes (types)
I non-const variant: Generates code for exclusive nodes

(all the rest).
I All variants use the variable id to generate (local)

instructions

32

HW3 Advice
The Testsuite

WABT integration:
I Validates the generated WASM code

SpiderMonkey integration:
I Not directly runnable by most of you
I Requires SpiderMonkey 115
I Runs the generated (and validated) WASM code
I See wasm.cc for details

33

HW3 Advice
The Testsuite

Running in the browser:
I You need to implement your own loader
I You need to use a local HTTP server

(eg. python3 -m http.server)
I Lets you use the awesome Chrome WASM debugger
I Note that the test suite writes the generated code in

$CWD/<testname>.{wat,wasm}

34

HW3 Advice
Strategy

1. Find/Write a WASM hello world module.
2. Implement and ensure that your loader works.

Don’t skip this step!
Make sure things work before you move on

3. Start writing webassembly code that passes the tests
4. Write the compiler code that generates the desired

WAT

35

HW3 Advice
Strategy

Compiler Strategy:
1. Start from outside to inside
2. (module)
3. (func)
4. (if)
5. (local) / let
6. OP_ADD

36

HW3 Advice
A Review of the Test Cases

Let’s launch the IDE

37

	Management of run-time resources
	Globals
	Heap
	Other Memory
	 Data Layout
	Alignment

	Implementing Kiraz Primitives in WASM
	Boolean
	Integer64
	String

	Implementing Key Operations in WASM
	io.print()
	let
	func
	if
	OP_ADD

	Writing and Debugging WebAssembly
	HW3 Advice
	gen_wat
	The Testsuite
	Strategy
	A Review of the Test Cases

