Compilers
INF-400

Burak Arslan

ext-inf4000@burakarslan.com

Galatasaray Universitesi

Lecture IX
2023-12-21

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

https://burakarslan.com/inf400

Our compiler so far ...

We have covered the front-end phases:
» Lexical analysis
» Parsing
» Semantic analysis
Next are the back-end phases:
» Code generation
» Optimization ?

LOut of scope of this course

Code Generation

... ok but;

What code we will generate? For what platform?

Code Generation

WebAssembly - Overview

Our target language is WebAssembly:
» A virtual ISA, descendant of asm js
» |n continuous development
» Many runtime environments (Web, WASI, .. .)
» Many implementations (V8, SpiderMonkey, etc.)

Code Generation

WebAssembly - Overview

WebAssembly 2.0:
» Still a working draft (ie. not yet fully standardized)

» Partially implemented in popular platforms

» \We need it because we want garbage collection!
» Enabled by default in Chrome > 119 and Firefox > 120

Code Generation

WebAssembly - Overview

WebAssembly 2.0 Text format (extension: .wat):
» Has 1-to-1 correspondence with the binary format 2
» Based on S-expressions

» Peruse its grammar from:
https://webassembly.github.io/spec/core/bikeshed#text-format

2There is apparently sort of a minor impedence mismatch but it won't affect us

https://webassembly.github.io/spec/core/bikeshed#text-format

Code Generation

WebAssembly - Overview

WebAssembly 2.0 Text format (extension: .wat):
» This is going to be the actual output of our
compiler
» We will use wat2wasm in our compilation pipeline in
order to create the actual wasm binary

Code Generation

WebAssembly - Overview

So we got the answers to our questions at the beginning:
» We will generate WebAssembly 2.0 Text Format
» We will target Firefox 1204+ and Chrome 119+

Code Generation

WebAssembly - Overview

Analogous answers if the target language was x64:

» We will generate code for Intel Broadwell architecture
» We will target GNU/Linux 4.14

Code Generation

WebAssembly - Concepts

WebAssembly implements a stack machine:
» Sequentially executed instructions.

» Instructions manipulate values on an implicit operand
stack

10

Code Generation

WebAssembly - Concepts

WASM has two types of instructions:
(this means it's not a pure stack machine)
» Simple instructions: Pop arguments from the
operand stack and push results back
» Control instructions: Alter program flow:

» Control flow is structured — it's expressed with well-nested
constructs such as blocks, loops, and conditionals.
» This means eg. no jumps that can land on arbitrary addresses

11

Code Generation

WebAssembly - Concepts

WebAssembly types are:

» Four basic number types: 132, i64, £32, f64.
132 type also serves as Boolean and as memory addresses.

» A single 128 bit wide vector type representing either 4
32-bit, or 2 64-bit IEEE 754 numbers, or either 2 64-bit integers,
4 32-bit integers, 8 16-bit integers or 16 8-bit integers.

» An Opaque reference type that represent pointers towards
different sorts of entities.

» An array of function handles.
» In WASM terms, they are called tables

12

Code Generation

WebAssembly - Concepts

Emphasis on:

132 type also serves as [...] memory addresses.

This means any WASM program is limited to
4GB of memory!

13

Code Generation

WebAssembly - Concepts

WebAssembly code has native functions:
» Functions can take and return zero or more sequential
values.
» Functions can have local mutable variables
» There is an unobservable implicit call stack — recursive

calls are possible.

14

Code Generation

WebAssembly - Concepts

WebAssembly code can produce traps:
» They can't be handled by WASM code,

» Execution halts — it's the platform’s job to clean up
the mess.

15

Code Generation

WebAssembly - Concepts

WebAssembly code works on a single® contiguous memory

block:
» It's a mutable block of raw types
» Out-of-bounds access results in a trap

» Memory segments can grow but not shrink

3Multiple memory blocks proposal is not yet accepted.
https://github.com/WebAssembly/multi-memory /issues/50

16

https://github.com/WebAssembly/multi-memory/issues/50

Code Generation

WebAssembly - Concepts

A WebAssembly binary takes the form of a module:
It contains definitions for:

>

>
>
>
>
>

Functions

Tables

Linear memory segments

Global variables

Initialization data for memory segments or tables
A start function that is automatically executed.

17

Code Generation

WebAssembly - Concepts

Definitions inside modules can be:
» Imported specifying a module/name pair and a suitable type
» Exported under one or more names.

18

Code Generation

Stack Machines

More on stack machines

19

Code Generation

Stack Machines

Stack machines offer:
» A simple evaluation model
» No variables or registers
» A stack of values for intermediate results

» Sequentially executed Instructions;

20

Code Generation

Stack Machines

Execution means to:

» Pop operands from the top of the stack (as many as
needed)

» Perform the required operation on them
» Push the result back to the top of the stack

21

Code Generation

Stack Machines

Quite simple to implement as:

» Each operation takes operands from the same place
and puts results in the same place

» This means a uniform compilation scheme

22

Code Generation

Stack Machines

Results in more compact programs because:

» Location of the operands is implicit
» Always on the top of the stack

» No need to specify operands explicitly
» No need to specify the location of the result
» Instruction “add” as opposed to “add r1, r2"

23

Code Generation

Stack Machines

One example as to why it's also fast:

» The add instruction does 3 memory operations:

» Two reads and one write to the stack
» The top of the stack is frequently accessed

» |dea: keep the top of the stack in a register

(called accumulator)
» Register accesses are faster

» The add instruction is now: acc += top_of_stack
» Only one memory operation!

24

Code Generation

Stack Machines

An example

(module
(func $add (param i32) (param i32) (result i32)
local.get O
local.get 1

132.add

)
(export "add" (func $add))

25

Runtime environment

The implementation of the ensemble of abstractions
embodied in the language definition is called
a runtime environment

26

Runtime environment

The compiler runtime deals with details like;

>

vvyyvyy

The layout and allocation of storage locations for the objects
named in the source program

The mechanisms used by the target program to access variables
The linkages between procedures
The mechanisms for passing parameters

The interfaces to the operating system, eg. input/output devices
and other programs

27

Runtime environment

The kiraz compiler runtime answers questions like:
» The size of a byte (in binary data)
» The size of a character (in a string)
» The size of an integer
» The layout of the members of a class
> etc.

28

Runtime environment

Alignment

» On most hardware platforms, data on memory needs
to align with (ie to start from) certain memory
addresses.

» If a word is 4 bytes, the starting address of

word-aligned data needs to be a multiple of 4.

» Unaligned access is either;

» Disallowed
» Slow

29

Runtime environment

Alignment

» WebAssembly doesn't require aligned access

» But real machines generally do!

» Finding the fastest access pattern requires:
» Doing lot of profiling
» Doing it on every new platform release (new hardware, new virtual
machines etc.)

30

Runtime environment
WASM Loader

First part of the compiler runtime is the loader:
» A compiled binary is just a bunch of bytes

» Loader is the program that parses the executable
format

» Sets the stage for the target code to run

31

Runtime environment
WASM Loader

The host platform needs:

» The entry point of the binary (In our case, the
main() function)

» Resources that the binary needs (eg. memory, storage,
graphics canvas)

» Platform facilities that the binary needs (eg. functions
used for storage access, network access, graphics
manipulation, hardware acceleration etc.)

32

Runtime environment
WASM Loader

Kiraz runtime is pretty static:
» No graphics access
» No input from outside world
» Only text output to the console

... which simplifies the loader quite a lot

33

Runtime environment
WASM Loader
Analogous answers if the target platform was Android:

» Various app permissions (access to contacts, network,
storage, position)
» Subject to battery optimizations?

» Program may change behavior based on screen size,
amount of ram, device orientation (portrait/landscape)

» Storage of secrets like login tokens, private keys etc.

34

Runtime environment
WASM Loader

The host platform needs to know:
» The entry point of the binary (In our case, the main() function)
» Resources that the binary needs (eg. amount of memory, access
to storage (which kind?), acess to graphics (canvas? webgl?))

» Platform facilities that the binary needs (eg. functions used for
storage access, network access, graphics manipulation, hardware

acceleration etc.)

35

Runtime environment
WASM Loader

The wasm binary needs access to:
» Handles to the functions that give access to various platform
facilities
» Memory

36

Runtime environment
WASM Loader

Since we are targeting the Web Platform, our loader is . ..

37

Runtime environment
WASM Loader

Since we are targeting the Web Platform, our loader is . ..

a HTML document!..

37

	Our compiler so far ...
	Code Generation
	WebAssembly - Overview
	WebAssembly - Concepts
	Stack Machines

	Runtime environment
	Alignment
	WASM Loader

