
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture IX
2023-12-21

mailto:ext-inf400@burakarslan.com

Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400

Our compiler so far ...

We have covered the front-end phases:
I Lexical analysis
I Parsing
I Semantic analysis
Next are the back-end phases:
I Code generation
I Optimization 1

1Out of scope of this course
2

Code Generation

. . . ok but;

What code we will generate? For what platform?

3

Code Generation
WebAssembly - Overview

Our target language is WebAssembly:
I A virtual ISA, descendant of asm.js
I In continuous development
I Many runtime environments (Web, WASI, . . .)
I Many implementations (V8, SpiderMonkey, etc.)

4

Code Generation
WebAssembly - Overview

WebAssembly 2.0:
I Still a working draft (ie. not yet fully standardized)
I Partially implemented in popular platforms
I We need it because we want garbage collection!

I Enabled by default in Chrome ≥ 119 and Firefox ≥ 120

5

Code Generation
WebAssembly - Overview

WebAssembly 2.0 Text format (extension: .wat):
I Has 1-to-1 correspondence with the binary format 2

I Based on S-expressions
I Peruse its grammar from:

https://webassembly.github.io/spec/core/bikeshed#text-format

2There is apparently sort of a minor impedence mismatch but it won’t affect us
6

https://webassembly.github.io/spec/core/bikeshed#text-format

Code Generation
WebAssembly - Overview

WebAssembly 2.0 Text format (extension: .wat):
I This is going to be the actual output of our

compiler
I We will use wat2wasm in our compilation pipeline in

order to create the actual wasm binary

7

Code Generation
WebAssembly - Overview

So we got the answers to our questions at the beginning:
I We will generate WebAssembly 2.0 Text Format
I We will target Firefox 120+ and Chrome 119+

8

Code Generation
WebAssembly - Overview

Analogous answers if the target language was x64:
I We will generate code for Intel Broadwell architecture
I We will target GNU/Linux 4.14

9

Code Generation
WebAssembly - Concepts

WebAssembly implements a stack machine:
I Sequentially executed instructions.
I Instructions manipulate values on an implicit operand

stack

10

Code Generation
WebAssembly - Concepts

WASM has two types of instructions:
(this means it’s not a pure stack machine)

I Simple instructions: Pop arguments from the
operand stack and push results back

I Control instructions: Alter program flow:
I Control flow is structured – it’s expressed with well-nested

constructs such as blocks, loops, and conditionals.
I This means eg. no jumps that can land on arbitrary addresses

11

Code Generation
WebAssembly - Concepts

WebAssembly types are:
I Four basic number types: i32, i64, f32, f64.

i32 type also serves as Boolean and as memory addresses.
I A single 128 bit wide vector type representing either 4

32-bit, or 2 64-bit IEEE 754 numbers, or either 2 64-bit integers,
4 32-bit integers, 8 16-bit integers or 16 8-bit integers.

I An Opaque reference type that represent pointers towards
different sorts of entities.

I An array of function handles.
I In WASM terms, they are called tables

12

Code Generation
WebAssembly - Concepts

Emphasis on:

i32 type also serves as [. . .] memory addresses.

This means any WASM program is limited to
4GB of memory!

13

Code Generation
WebAssembly - Concepts

WebAssembly code has native functions:
I Functions can take and return zero or more sequential

values.
I Functions can have local mutable variables
I There is an unobservable implicit call stack – recursive

calls are possible.

14

Code Generation
WebAssembly - Concepts

WebAssembly code can produce traps:
I They can’t be handled by WASM code,
I Execution halts – it’s the platform’s job to clean up

the mess.

15

Code Generation
WebAssembly - Concepts

WebAssembly code works on a single3 contiguous memory
block:
I It’s a mutable block of raw types
I Out-of-bounds access results in a trap
I Memory segments can grow but not shrink

3Multiple memory blocks proposal is not yet accepted.
https://github.com/WebAssembly/multi-memory/issues/50

16

https://github.com/WebAssembly/multi-memory/issues/50

Code Generation
WebAssembly - Concepts

A WebAssembly binary takes the form of a module:
It contains definitions for:
I Functions
I Tables
I Linear memory segments
I Global variables
I Initialization data for memory segments or tables
I A start function that is automatically executed.

17

Code Generation
WebAssembly - Concepts

Definitions inside modules can be;
I Imported specifying a module/name pair and a suitable type
I Exported under one or more names.

18

Code Generation
Stack Machines

More on stack machines

19

Code Generation
Stack Machines

Stack machines offer:
I A simple evaluation model
I No variables or registers
I A stack of values for intermediate results
I Sequentially executed Instructions;

20

Code Generation
Stack Machines

Execution means to:
I Pop operands from the top of the stack (as many as

needed)
I Perform the required operation on them
I Push the result back to the top of the stack

21

Code Generation
Stack Machines

Quite simple to implement as:
I Each operation takes operands from the same place

and puts results in the same place
I This means a uniform compilation scheme

22

Code Generation
Stack Machines

Results in more compact programs because:
I Location of the operands is implicit

I Always on the top of the stack

I No need to specify operands explicitly
I No need to specify the location of the result
I Instruction “add” as opposed to “add r1, r2”

23

Code Generation
Stack Machines

One example as to why it’s also fast:
I The add instruction does 3 memory operations:

I Two reads and one write to the stack
I The top of the stack is frequently accessed

I Idea: keep the top of the stack in a register
(called accumulator)
I Register accesses are faster

I The add instruction is now: acc += top_of_stack
I Only one memory operation!

24

Code Generation
Stack Machines

An example:

(module
(func $add (param i32) (param i32) (result i32)

local.get 0
local.get 1

i32.add
)
(export "add" (func $add))

)

25

Runtime environment

The implementation of the ensemble of abstractions
embodied in the language definition is called

a runtime environment

26

Runtime environment

The compiler runtime deals with details like;
I The layout and allocation of storage locations for the objects

named in the source program
I The mechanisms used by the target program to access variables
I The linkages between procedures
I The mechanisms for passing parameters
I The interfaces to the operating system, eg. input/output devices

and other programs

27

Runtime environment

The kiraz compiler runtime answers questions like:
I The size of a byte (in binary data)
I The size of a character (in a string)
I The size of an integer
I The layout of the members of a class
I etc.

28

Runtime environment
Alignment

I On most hardware platforms, data on memory needs
to align with (ie to start from) certain memory
addresses.

I If a word is 4 bytes, the starting address of
word-aligned data needs to be a multiple of 4.

I Unaligned access is either;
I Disallowed
I Slow

29

Runtime environment
Alignment

I WebAssembly doesn’t require aligned access
I But real machines generally do!
I Finding the fastest access pattern requires:

I Doing lot of profiling
I Doing it on every new platform release (new hardware, new virtual

machines etc.)

30

Runtime environment
WASM Loader

First part of the compiler runtime is the loader:
I A compiled binary is just a bunch of bytes
I Loader is the program that parses the executable

format
I Sets the stage for the target code to run

31

Runtime environment
WASM Loader

The host platform needs:
I The entry point of the binary (In our case, the

main() function)
I Resources that the binary needs (eg. memory, storage,

graphics canvas)
I Platform facilities that the binary needs (eg. functions

used for storage access, network access, graphics
manipulation, hardware acceleration etc.)

32

Runtime environment
WASM Loader

Kiraz runtime is pretty static:
I No graphics access
I No input from outside world
I Only text output to the console
. . . which simplifies the loader quite a lot

33

Runtime environment
WASM Loader

Analogous answers if the target platform was Android:
I Various app permissions (access to contacts, network,

storage, position)
I Subject to battery optimizations?
I Program may change behavior based on screen size,

amount of ram, device orientation (portrait/landscape)
I Storage of secrets like login tokens, private keys etc.

34

Runtime environment
WASM Loader

The host platform needs to know:
I The entry point of the binary (In our case, the main() function)
I Resources that the binary needs (eg. amount of memory, access

to storage (which kind?), acess to graphics (canvas? webgl?))
I Platform facilities that the binary needs (eg. functions used for

storage access, network access, graphics manipulation, hardware
acceleration etc.)

35

Runtime environment
WASM Loader

The wasm binary needs access to:
I Handles to the functions that give access to various platform

facilities
I Memory

36

Runtime environment
WASM Loader

Since we are targeting the Web Platform, our loader is . . .

a HTML document!..

37

Runtime environment
WASM Loader

Since we are targeting the Web Platform, our loader is . . .

a HTML document!..

37

	Our compiler so far ...
	Code Generation
	WebAssembly - Overview
	WebAssembly - Concepts
	Stack Machines

	Runtime environment
	Alignment
	WASM Loader

