
Compilers
INF-400

Burak Arslan
ext-inf400@burakarslan.com

Galatasaray Üniversitesi

Lecture XI
2024-12-19

mailto:ext-inf400@burakarslan.com


Course website

burakarslan.com/inf400

1

https://burakarslan.com/inf400


Course website

Runtime Environments (cont’d)

2



News

Note that:
1. This is the last lecture
2. Next week: Mock Final

3



Code Generation

Two goals:
1. Correctness
2. Speed

Most complications in code generation come from trying
to be fast as well as correct

4



Code Generation
Assumptions about Execution

1. Execution is sequential; control moves from one point
in a program to another in a well-defined order

2. When a procedure is called, control eventually returns
to the point immediately after the call

Do these assumptions always hold?

5



Activations

I An invocation of procedure P is an
activation of P

I The lifetime of an activation of P is:
I All the steps to execute P
I Including all the steps in procedures P calls

6



Activations
Lifetimes of Variables

The lifetime of a variable x is the portion of execution in
which x is defined
I Lifetime is a dynamic (run-time) concept
I Scope is a static concept

7



Activations
Activation Trees

I Assumption (2) requires that when P calls Q, then Q
returns before P does

I Lifetimes of procedure activations are properly nested
I Activation lifetimes can be depicted as a tree

8



Activations
Activation Trees: An Example

func g() : Integer64 { return 1 };
func f() : Integer64 { return g(); };
func main(): Integer64 { g(); return f(); };

main

g f

g
9



Activations
Activation Trees

I The activation tree depends on run-time behavior
I The activation tree may be different for every program

input
I Since activations are properly nested, a stack can

track currently active procedures

10



Activations
Activation Records

I The information needed to manage one procedure
activation is called an activation record (AR) or stack
frame or just "frame".

I If procedure F calls G, then G’s activation record
contains a mix of info about F and G.

11



Activations
Activation Records

WASM already contains an function stack implementation:
I We won’t need to deal with managing the function

call stack

12



Code Generation for Object-Oriented
Programming Languages

13



Code Generation for OOPL
Is kiraz an OOPL?

Three pillars of Object Oriented Programming are:
1. Encapsulation
2. Inheritance
3. Polymorphism

Does kiraz support all three?

14



Code Generation for OOPL
Object Layout

I OO Slogan: If B is a subclass of A, then an object of
class B can be used wherever an object of class A is
expected

I This means that code in class A works unmodified for
an object of class B

15



Code Generation for OOPL
Object Layout

Two issues:
I How are objects represented in memory?
I How is dynamic dispatch implemented?

16



Code Generation for OOPL
Object Layout class A {

a: Integer64;
d: Integer64;
func f(): Integer64 {

a = a + d; return r;
};

};

class B : A { class C : A {
b: Integer64; c: Integer64;
func f(): Integer64 { func h(): Integer64 {

return a; }; a = a + c; return a;
func g(): Integer64 { };

a = a + b; return a; }; };
};

17



Code Generation for OOPL
Object Layout

Attributes a and d are inherited by classes B and C
I All methods in all classes refer to a
I For the methods of A to work correctly in A, B, and C

objects, attribute a must be in the same "place" in
each object

18



Code Generation for OOPL
Object Layout

Just like structs in C, The dot operator statement

foo.attribute

translates to an index into a foo struct at an offset
corresponding to attribute

19



Code Generation for OOPL
Object Layout

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A
with additional slots for the additional attributes of B
Leaves the layout of A unchanged (B is an extension)

20



Code Generation for OOPL
Object Layout

Question: Given that each Integer64 in kiraz needs 1
i32 and 1 i64 in memory,
how many bytes does each clas A, B and C take, given
64bit alignment ignoring all additional class metadata?

21



Code Generation for OOPL
Dynamic Dispatch

e.g()
I g refers to method in B if type of e is B

e.f()
I f refers to method in A if type of e is A or C

(inherited in the case of C)
I f refers to method in B if type of e is B

22



Code Generation for OOPL
Dispatch Tables

Every class has a fixed set of methods (including inherited
methods)
A dispatch table indexes these methods:
I An array of method entry points
I A method f lives at a fixed offset in the dispatch table

for a class and all of its subclasses

23



Code Generation for OOPL
Dispatch Tables

The dispatch pointer in an object of class X points to the
dispatch table for class X
I Every method f of class X is assigned an offset Of in

the dispatch table at compile time

24



Code Generation for OOPL
Dispatch Tables

This is called a vtable in C++
I Each class with at least one virtual method has a

vtable pointer
I There is one vtable per class (not instance!)
I Virtual functions are called by first looking up the

actual function pointer in the vtable

25


	Code Generation
	Activations
	Code Generation for OOPL

