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News

Note that:
1. This is the last lecture
2. Next week: Mock Final
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Code Generation

Two goals:
1. Correctness
2. Speed

Most complications in code generation come from trying
to be fast as well as correct

4



Code Generation
Assumptions about Execution

1. Execution is sequential; control moves from one point
in a program to another in a well-defined order

2. When a procedure is called, control eventually returns
to the point immediately after the call

Do these assumptions always hold?

5



Activations

I An invocation of procedure P is an
activation of P

I The lifetime of an activation of P is:
I All the steps to execute P
I Including all the steps in procedures P calls
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Activations
Lifetimes of Variables

The lifetime of a variable x is the portion of execution in
which x is defined
I Lifetime is a dynamic (run-time) concept
I Scope is a static concept
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Activations
Activation Trees

I Assumption (2) requires that when P calls Q, then Q
returns before P does

I Lifetimes of procedure activations are properly nested
I Activation lifetimes can be depicted as a tree
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Activations
Activation Trees: An Example

func g() : Integer64 { return 1 };
func f() : Integer64 { return g(); };
func main(): Integer64 { g(); return f(); };

main

g f

g
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Activations
Activation Trees

I The activation tree depends on run-time behavior
I The activation tree may be different for every program

input
I Since activations are properly nested, a stack can

track currently active procedures
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Activations
Activation Records

I The information needed to manage one procedure
activation is called an activation record (AR) or stack
frame or just "frame".

I If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
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Activations
Activation Records

WASM already contains an function stack implementation:
I We won’t need to deal with managing the function

call stack
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Code Generation for Object-Oriented
Programming Languages
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Code Generation for OOPL
Is kiraz an OOPL?

Three pillars of Object Oriented Programming are:
1. Encapsulation
2. Inheritance
3. Polymorphism

Does kiraz support all three?
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Code Generation for OOPL
Object Layout

I OO Slogan: If B is a subclass of A, then an object of
class B can be used wherever an object of class A is
expected

I This means that code in class A works unmodified for
an object of class B
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Code Generation for OOPL
Object Layout

Two issues:
I How are objects represented in memory?
I How is dynamic dispatch implemented?
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Code Generation for OOPL
Object Layout class A {

a: Integer64;
d: Integer64;
func f(): Integer64 {

a = a + d; return r;
};

};

class B : A { class C : A {
b: Integer64; c: Integer64;
func f(): Integer64 { func h(): Integer64 {

return a; }; a = a + c; return a;
func g(): Integer64 { };

a = a + b; return a; }; };
};
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Code Generation for OOPL
Object Layout

Attributes a and d are inherited by classes B and C
I All methods in all classes refer to a
I For the methods of A to work correctly in A, B, and C

objects, attribute a must be in the same "place" in
each object
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Code Generation for OOPL
Object Layout

Just like structs in C, The dot operator statement

foo.attribute

translates to an index into a foo struct at an offset
corresponding to attribute
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Code Generation for OOPL
Object Layout

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A
with additional slots for the additional attributes of B
Leaves the layout of A unchanged (B is an extension)

20



Code Generation for OOPL
Object Layout

Question: Given that each Integer64 in kiraz needs 1
i32 and 1 i64 in memory,
how many bytes does each clas A, B and C take, given
64bit alignment ignoring all additional class metadata?
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Code Generation for OOPL
Dynamic Dispatch

e.g()
I g refers to method in B if type of e is B

e.f()
I f refers to method in A if type of e is A or C

(inherited in the case of C)
I f refers to method in B if type of e is B
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Code Generation for OOPL
Dispatch Tables

Every class has a fixed set of methods (including inherited
methods)
A dispatch table indexes these methods:
I An array of method entry points
I A method f lives at a fixed offset in the dispatch table

for a class and all of its subclasses
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Code Generation for OOPL
Dispatch Tables

The dispatch pointer in an object of class X points to the
dispatch table for class X
I Every method f of class X is assigned an offset Of in

the dispatch table at compile time
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Code Generation for OOPL
Dispatch Tables

This is called a vtable in C++
I Each class with at least one virtual method has a

vtable pointer
I There is one vtable per class (not instance!)
I Virtual functions are called by first looking up the

actual function pointer in the vtable
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